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Abstract

Recent advances in automated theorem proving leverages language models to
explore expanded search spaces by step-by-step proof generation. However, such
approaches are usually based on short-sighted heuristics (e.g., log probability
or value function scores) that potentially lead to suboptimal or even distracting
subgoals, preventing us from finding longer proofs. To address this challenge, we
propose POETRY (PrOvE Theorems RecursivelY), which proves theorems in a
recursive, level-by-level manner in the Isabelle theorem prover. Unlike previous
step-by-step methods, POETRY searches for a verifiable sketch of the proof at each
level and focuses on solving the current level’s theorem or conjecture. Detailed
proofs of intermediate conjectures within the sketch are temporarily replaced
by a placeholder tactic called sorry, deferring their proofs to subsequent levels.
This approach allows the theorem to be tackled incrementally by outlining the
overall theorem at the first level and then solving the intermediate conjectures at
deeper levels. Experiments are conducted on the miniF2F and PISA datasets and
significant performance gains are observed in our POETRY approach over state-
of-the-art methods. POETRY on miniF2F achieves an average proving success
rate improvement of 5.1%. Moreover, we observe a substantial increase in the
maximum proof length found by POETRY, from 10 to 262.

1 Introduction

Neural theorem proving has made significant strides in recent years [Polu and Sutskever, 2020, Han
et al., 2022, Polu et al., 2022, Wang et al., 2023c, Jiang et al., 2022a, 2021, 2022b, Wang et al.,
2023b, Huang et al., 2024, Thakur et al., 2024, Liu et al., 2023, Xiong et al., 2023], particularly
with the integration of language models and search algorithms [Polu and Sutskever, 2020, Han et al.,
2022, Jiang et al., 2022a, Yang et al., 2023, Lample et al., 2022]. The combination of language
models, which excel at understanding and generating human-like text, and search algorithms, which
systematically explore potential solutions, has proven to be a powerful approach to discovering proofs
for intricate theorems.

As shown in Figure 1(a), search-based neural theorem proving methods begin with a theorem
statement to prove. A formal mathematic environment like Isabelle will first process the theorem
statement and provide the initial proof state. Starting with the initial proof state, the proving
process alternates between sampling new proof steps from the language model and obtaining new

∗ These authors contributed equally. † Corresponding authors
2https://github.com/wiio12/POETRY

Preprint. Under review.

ar
X

iv
:2

40
5.

14
41

4v
1 

 [
cs

.A
I]

  2
3 

M
ay

 2
02

4

https://github.com/wiio12/POETRY


assume n_ge: "n ≥ 0" thus ?thesis
  proof (cases)
    assume m_ge: "m ≥ 0" thus 
    ?thesis sorry
  next
    assume m_lt: "¬ m ≥ 0" 
    with n_ge show ?thesis sorry
  qed

assume n_lt: "¬ n ≥ 0" 
       thus ?thesis
  proof (cases)
    assume m_ge: "m ≥ 0" 
    have "inv x [̂ ] (nat m * nat 
(- n)) = inv x [̂ ] nat (- (m * 
n))" sorry
    show ?thesis sorry
  ...

assume m_ge: "m ≥ 0" 
       thus ?thesis
  using n_ge nat_pow_pow 
int_pow_def2

assume m_lt: "¬ m ≥ 0" 
  with n_ge show ?thesis
  apply (simp add: in-
t_pow_def2)
  by (metis assms mult_mi-
nus_right n_ge 
nat_pow_pow)

have "inv x [̂ ] (nat m * 
nat (- n)) = inv x [̂ ] nat 
(- (m * n))"
  by (metis (full_types) 
m_ge mult_minus_right)

theorem(in group) int_pow_pow:

  assumes "x ∈ carrier G"

  shows "(x [̂ ] (n :: int)) [̂ ] (m :: 

int) = x [̂ ] (n * m :: int)"

proof (cases)

 assume n_ge: "n ≥ 0" thus ?thesis

   proof (cases)

     assume m_ge: "m ≥ 0" thus ?thesis

      using n_ge nat_pow_pow in   
t_pow_def2

  ...

qed

>>> goal (1 subgoal): 1. (x [̂ ] n) [̂ ] m...

>>> goal (2 subgoals): 1. ?P ⟹ (x... 2...

>>> using this: 0 ≤ n goal (1 subgoal):...

>>> goal (2 subgoals): 1. 0 ≤ n ⟹  ... 

>>> using this: 0 ≤ m goal (1 subgoal)...

theorem(in group) int_pow_pow:

  assumes "x ∈ carrier G"

  shows "(x [̂ ] (n :: int)) [̂ ] (m 

:: int) = x [̂ ] (n * m :: int)"

proof (cases)

  assume n_ge: "n ≥ 0" 
         thus ?thesis sorry

next

  assume n_lt: "¬ n ≥ 0" 
         thus ?thesis sorry

qed

>>> goal (1 subgoal): 1. (x [̂ ] n) [̂ ] m ...

>>> goal (2 subgoals): 1. ?P ... 2. ¬ ?P... 

>>> Successful solve goal: (0 ≤ n) ...

>>> goal (1 subgoal): 1. ¬ 0 ≤ n ⟹ (x [...

>>> Successful solve goal: (¬ 0 ≤ n)...

Proof Level 1 Proof Level 2 Proof Level 3

(a) Step-by-step Proof
...

>>> No subgoals!

>>> Successful solve goal (m ≥ 0) ...

>>> No subgoals!

(b) Recursive Proof

Proof Target

Proof Sketch

Middle Conj.

Middle Conj.

Complete proof

Proof Sketch

Proof Target (theorem/middle conjecture)

>>>... 

Middle Conj.

Proof State proof... Proof Step

Figure 1: Comparison between the step-by-step proof and the recursive proof. (a) A step-by-step proving
approach ignores the hierarchical structure inherent in the proof, treating it merely as a sequence of proof steps.
The proof cannot be verified as valid until it is fully complete. (b) The recursive proving method decomposes the
structured proof into different levels of verifiable proof sketches. Each proof sketch attempts to prove the target
theorem or conjecture by outlining the primary steps at the current level and postponing the proof of intermediate
conjectures to the next level.

states by executing the generated proof steps within the formal mathematic enviroment. Additionally,
a search algorithm, such as best-first search or Monte Carlo Tree Search (MCTS), is employed to
find a complete path of proof steps. The search algorithm selects the next state to explore based on
heuristics such as the log-probability of the proof step [Polu and Sutskever, 2020, Jiang et al., 2022a,
Yang et al., 2023], value function scores of the proof state [Han et al., 2022, Polu et al., 2022] (in
best-first search), or a PUCT score that combines both [Wang et al., 2023c, Lample et al., 2022] (in
MCTS). These heuristics assess the plausibility or potential value of a given step, helping to prioritize
the most promising actions. However, these scores are approximate, do not ensure the correctness
of the proof direction, and can lead to exploring sub-optimal or distracting subgoals. Even if the
language model is capable enough to produce correct proof steps, the search algorithm, guided by
short-sighted heuristics, often gets trapped exploring a detailed proof of a meaningless intermediate
conjecture. This wastes time and may even cause the algorithm to fail in finding the correct proof
path due to a search timeout. Moreover, as the length of the proof increases in more challenging
problems, the search space expands exponentially. Consequently, the need for an accurate heuristic to
guide the search becomes critical, as a ‘myopic’ step-by-step approach can easily get lost in the vast
expanse of the intermediate proving steps.

To address the aforementioned drawbacks, we propose POETRY, a novel approach that proves the
theorem recursively, level by level. As shown in Figure 1(b), POETRY first searches for a proof sketch,
which is defined to be a verifiable proof outline with the detailed proof of the middle conjecture
replaced by a placeholder tactic, sorry. The sorry tactic signals the formal environment to temporarily
ignore the proof of the middle conjecture, assuming it as resolved. Once a validated proof sketch is
established, POETRY then endeavors to prove the intermediate conjectures that remain unresolved,
also in a recursive, level-by-level manner. This procedure persists until every sorry keyword is
substituted with a valid proof. Notably, the verified sketch at each level may still contain errors.
Since POETRY uses the sorry tactic to skip the proof of intermediate conjectures, these conjectures
might represent false statements and be unprovable. However, they still serve as correct conjectures
to prove the target theorem or conjecture at the current level, resulting in an incorrect proof sketch.
For example, to prove the theorem of the commutative property of addition, a+ b = b+ a, a false
conjecture such as a = b might be used. However, when actually attempting to prove a = b, we
would never be able to find a valid proof at the next level. If a false proof sketch is generated and
POETRY fails to find the proof for the middle conjecture, it will continue its search to identify a new
proof sketch. Nevertheless, Empirical evidence indicates that verifying and ensuring the correctness
of the proof sketch at each level before delving into deeper proofs significantly enhances performance.
Additionally, we observe a substantial increase in the length of the proofs being able to be generated
by POETRY compared with step-by-step approaches. This recursive methodology is inspired by
human problem-solving techniques, where complex problems are decomposed into manageable
sub-problems, each addressed using a similar recursive strategy. By adopting this approach, POETRY
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not only improves the efficiency of its search process but also increases the overall success rate in
discovering valid proofs.

We conduct extensive experiments on the theorem proving datasets miniF2F [Zheng et al., 2021]
and PISA [Jiang et al., 2021] to validate the effectiveness of our proposed approach. POETRY
significantly outperforms previous approaches, achieving a pass rate of 42.2% on both the miniF2F
valid and test datasets, respectively. With a 5.1% absolute improvement on average over the previous
state-of-the-art. Additionally, our ablation study shows that with recursive theorem proving, we obtain
a 3.9% absolute improvement on average compared with step-by-step baselines. Our case study also
reveals that POETRY can find proofs substantially longer compared with sequential step-by-step
proving methods, the maximum proof length increases from 10 to 26 compared to the step-by-step
baseline in the PISA dataset.

2 Preliminary

2.1 Formal Mathematic Enviroments

We choose Isabelle [Paulson, 1994] as our formal environment. It is widely used for formal verification
purposes in academia and industry [Gesellensetter et al., 2008, Klein et al., 2009, Zhang et al., 2024].
It employs a structured proof language called Isar [Wenzel et al., 2004], which facilitates the creation
of human-readable proofs and bridges the gap between formal verification and human understanding.
As illustrated in Figure 1(a), Isabelle processes each proof step (or tactic) and provides feedback.
If the proof step fails to apply, an error message is returned. Otherwise, Isabelle returns a proof
state along with a special variable, proof level, indicating the current level after applying the
step. In the Isabelle theorem prover, the proof level indicates the depth within a structured proof.
This level increases with commands like have, obtain, and show, which introduce new subgoals
or conjectures in the proof. Conversely, it decreases with commands like by, qed and done, which
conclude a proof block or subgoal.

Isabelle is well-suited for POETRY to accomplish recursive theorem proving. The Isar language
is elegantly structured in a level-by-level format, and it contains proof level that can be easily
used to identify each level. However, the recursive proving technique proposed by POETRY is not
specific to Isabelle; the same framework can be extended to other formal mathematical environments
like Lean [de Moura et al., 2015], Coq [Barras et al., 1997], and HOL [Harrison, 2009], with
additional engineering effort to accommodate the proving strategies. These environments also
provide mechanisms to temporarily skip parts of proofs, similar to Isabelle’s sorry tactic, such
as Lean’s sorry, and Coq’s Admitted. We will leave the extension of POETRY to other formal
environments for future work.

2.2 Search-Based Neural Theorem Proving

Search-based neural theorem proving mostly employs the approach introduced by GPT-f [Polu and
Sutskever, 2020]. In this method, a pre-trained causal language model predicts the next proof step
based on the current proof state and optional context. The language model is trained using data
formatted as follows:

INPUT: CONTEXT $(context) GOAL $(proof state) STEP
OUTPUT: $(proof step) (1)

where $(·) represents the substitution operation, and context denotes the preceding proof steps
leading to the current proof state. At test time, GPT-f employs a best-first search strategy to identify a
sequence of proof steps that solve the problem. Specifically, The proof search algorithm constructs a
tree-like search structure, where each node represents a proof state and each edge represents a proof
step. Starting from the root node, the proof search continuously selects the unexplored node with the
highest score and performs an expansion. The score for each node is the cumulative log probability
of the proof steps that led to the node. During expansion, the language model receives the node’s
proof state and preceding context, then samples e new proof steps. Isabelle subsequently processes
these proof steps, generating new proof states or error messages. The search continues until a proof
is found or the computational budget is exhausted.
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3 Methodology

Algorithm 1 Core data curation process
1: function EXTRACTPROOFSKETCH(proofLines , index )
2: ▷ proofLines: a list of pairs of the format “(proofStep, proofLevel)”
3: ▷ index : the starting index in proofLines for processing
4: currentSketch, allSketches ← empty list, empty list
5: _ , currentLevel ← proofLines[index ] ▷ Obtain the current proof level being extracted
6: proofLevel ← currentLevel
7: while proofLevel ≥ currentLevel do ▷ Extraction ends after the proof level drops below the current

proof level
8: proofStep, proofLevel ← proofLines[index ]
9: _ ,nextLevel ← proofLines[index + 1]

10: if nextLevel = currentLevel then
11: currentSketch.append(proofStep)
12: index ← index + 1
13: else if nextLevel > currentLevel then
14: currentSketch.append(proofStep + “ sorry") ▷ Replace the next level proof with sorry
15: deeperSketches, index ← EXTRACTPROOFSKETCH(proofLines, index + 1)
16: allSketches.extend(deeperSketches)
17: end if
18: end while
19: allSketches.append(currentSketch)
20: return allSketches, index
21: end function

3.1 Recursive Data Construction

Proof sketch extraction. As illustrated in Figure 1(b), to prepare recursive proving data, we need to
split theorems into blocks of proof sketches. Each proof sketch focuses solely on the target theorem,
conjectures, or subgoals, with the detailed proof of intermediate conjectures or subgoals replaced
by the sorry tactic. Algorithm 1 presents the pseudocode for the sketch data extraction process.
POETRY initially inputs the complete theorem text into Isabelle, which parses it into a sequence of
proof lines, containing proof steps and corresponding proof levels. Subsequently, the list of proof
lines is passed to the ExtractProofSketch function with the index set to 0, initiating the extraction of
all proof sketches. The sketch proof extraction process starts by identifying the current proof level,
which is determined by the level of the proof step at the initial index (Line 5). Proof steps that are
on the same level as the target theorem, conjectures, or subgoals are those that directly focus on
proving the target. Our goal is to retain proof steps with a proof level equal to the current proof level
(Lines 10-12) and replace higher-level proof steps with the sorry tactic (Lines 13-16). We defer the
extraction of higher-level proofs to the recursive call of ExtractProofSketch in Line 15. Finally, the
function will return a list of extracted proof sketches, each containing only the current level of proof,
as illustrated in Figure 1(b).

Training data construction. Following the extraction of proof sketches, POETRY follows [Jiang
et al., 2022a] and uses PISA, an interactive environment built on top of Isabelle, to extract proof
states for each proof step. Subsequently, the proof states and proof steps are reformatted into lines in
Equation 1 and used as training examples to fine-tune the language model. Notably, although sorry is
an independent tactic in Isabelle, POETRY integrates the sorry tactic into the preceding proof step
(Line 14 in Algorithm 1). This enables the language model to predict the intermediate conjectures
and the sorry tactic simultaneously. For example, a proof step with the sorry keyword would appear
as have "x + 2 = 2x" sorry. Merging the sorry tactic is crucial to ensure that the language model
generates proof steps at the current level and postpones higher-level proofs using the sorry tactic.
Without this merge, the model must determine the use of sorry solely based on the context and
proof state, which offers no guarantee that the model will generate the necessary sorry after stating a
conjecture or subgoal. This approach ensures that deep-level proofs are deferred correctly.
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Figure 2: A walkthrough example of recursive BFS. Each node in the proof tree is a proof state and each
edge is a proof step. (a) The proof search begins by finding the proof sketch at the first level using BFS. The
search is paused upon identifying a successful proof path, marked with P and HP nodes. This proof path contains
a sorry edge, indicating that it includes skipped conjectures or subgoals that must be addressed in the next level.
(b) Recursive BFS enters the next level of proof search to attempt to prove the skipped subgoal from the first
level. Unfortunately, the proof search for this subgoal fails due to a lack of valid nodes to explore, and the search
returns to the first level. (c) After the failed attempt to prove the subgoal, the previously established proof path at
the first level becomes invalid. Consequently, we backpropagate the failure from the second level’s root node up
to the first-level root node, updating all the HP nodes to an O node. (d) At the first level, with the status set to
open for searching proofs, we continued to explore new proof paths. Fortunately, we discovered another proof
path. However, this path also contained a sorry edge with a skipped conjecture that needs to be proved at the
next level. (e) Similar to (b), the recursive BFS proceeds to the next level to search for a proof for the previously
skipped conjecture. It successfully finds a proof path without any "sorry" edges (denoted as P nodes), indicating
that the conjecture has been proven successfully without any skipped intermediate conjectures or subgoals in the
proof path. (f) After finding the sub-level proof, the recursive BFS returns to the first level and backpropagates
the PROVED message to the root, completing the proof.

3.2 Recursive Best-First Search

To prove theorems recursively, POETRY introduces a novel recursive best-first search (recursive
BFS) algorithm to conduct a level-by-level proof search. Figure 2 illustrates a complete walkthrough.
In general, recursive BFS employs the best-first search technique to search for proof sketches at each
level. When a proof sketch is found at a certain level, the algorithm pauses the search at this current
level and then proceeds to the next level to solve the skipped middle conjectures by this current
level. Once all sketches are found and middle conjectures or subgoals are resolved, a complete
proof is achieved. Recursive BFS enhances the generic best-first search to handle multi-level proofs
and ensures that the search can pause and continue across different proof levels, adapting BFS to
dynamically shift between current and subsequent proof layers based on the progress and outcomes
of proof sketches. Below, we will introduce the core elements in the recursive BFS: the sorry edge
and the node status. For the complete updating rules of nodes status and proof search terminate
conditions, please refer to Appendix A.1.

Sorry edge and node status. As shown in Figure 2(a), each node in the proof tree is a proof state,
and each edge is a proof step. In a proof state, once a tactic contains a "sorry" keyword (usually
after a conjecture or subgoal), we use a special sorry edge to connect the parent node and the child
node. Then the sorry edge attaches the root node of the next proof level with an unproved conjecture
or subgoal. Such root nodes have a score of 0 and will not be selected in the current-level proof
search. Moreover, we attach each node in the search tree with one of the status labels: OPEN (the
node is open, and no proof has been found so far), FAILED (the node is failed when all potential
subproofs or child nodes stemming from it are unable to establish a valid proo), PROVED (the node
is proven and part of the successful proof), and HALF-PROVED. A HALF-PROVED node means it
belongs to the trajectory that has successfully found a complete proof sketch but contains special
sorry edges with unsolved next-level subgoal or mid-conjecture. Only after all the mid-conjectures
or subgoals in the sorry edges from the HALF-PROVED node to the PROVED node are proved
will the node be switched to a PROVED node, as illustrated in Figure 2(f).

Using recursive best-first search, POETRY can generate a verifiable proof sketch at each proving
level before proceeding to prove the middle conjectures or subgoals at the next level. In essence,
POETRY breaks down a lengthy proof into manageable, shorter proof sketches, preventing the search
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space from expanding exponentially as the proof length increases. This approach allows search-based
methods to find more challenging and longer proofs without necessitating a highly performant value
function model to guide the proof search procedure.

4 Experiments

4.1 Experimental Setup

This section presents our experimental setup, detailing the baselines and evaluation metrics. The
implementation details are covered in Appendix A.2.

Baseline methods. To fairly compare POETRY with classic step-by-step baselines like GPT-f [Polu
and Sutskever, 2020, Jiang et al., 2022a], we implement an Isabelle version of GPT-f, denoted as
GPT-f Baseline. This baseline model is trained on the same dataset as POETRY, with the only
modification being the removal of all sorry keywords in the proof steps. All hyperparameters and
setups for training and the BFS search are identical to POETRY to ensure a fair comparison.

Notably, the GPT-f Baseline is similar to Thor [Jiang et al., 2022a], except for three main differences.
Firstly, GPT-f Baseline does not use Sledgehammer [Paulson, 2010], nor replace the smt, metis tactic
with <hammer> in the proof step for training. Secondly, GPT-f Baseline fine-tunes a 1.3B parameter
proofGPT [Azerbayev et al., 2023], whereas Thor uses a 700M model pre-trained on The Pile [Gao
et al., 2020]. GPT-f Baseline also uses a newer version of Isabelle which contains more state action
pairs for training (detailed in Section A.3). Thirdly, during the proof search, the GPT-f Baseline
utilizes the beam-search decoding method instead of sampling to generate proof steps for each proof
state.

Aside from the GPT-f Baseline, we also include state-of-the-art search-based neural theorem-proving
methods. PACT [Han et al., 2022], FMSCL [Polu et al., 2022], Leandojo [Yang et al., 2023], and
COPRA [Thakur et al., 2024] are works focusing on the Lean formal environment.3 Contrastively,
Thor [Jiang et al., 2022a], Thor with expert iteration on auto-formalized data [Wu et al., 2022] and
Thor + Magnushammer [Mikuła et al., 2023] are works done in Isabelle. Moreover, for methods with
LLMs, COPRA is an in-context learning agent that uses GPT-4 [OpenAI, 2023] to generate proof
steps and prove the theorem step by step.

We do NOT compare our methods with LLM-based proving approaches like DSP [Jiang et al., 2022b],
Lyra [Zheng et al., 2023], or LEGO-Prover [Wang et al., 2023b]. These approaches employ general-
purpose large language models (LLMs), such as ChatGPT or GPT-4, which feature several orders
of magnitude more parameters than the models considered in our study. Moreover, these methods
typically utilize proofs in natural language to guide the generation of formal code without searching
and attempting to solve each problem 100 times. In contrast, POETRY provides a performance
evaluation at pass@1, attempting to prove the theorem once for each problem.

Evaluation datasets and metrics. For evaluation, we use two datasets, the miniF2F dataset [Zheng
et al., 2021], and the PISA [Jiang et al., 2021]. The miniF2F dataset comprises 488 problems with
varying levels of difficulty, ranging from basic algebra and number theory, originating from the
MATH dataset [Hendrycks et al., 2021], to more challenging problems found in the AIME4 and
IMO [Daniel Selsam, 2019]. The problems are divided into valid and test sets, with 244 problems
each. The miniF2F dataset only contains problem statements and we only evaluate our method on
this dataset, without any training. The other dataset we adopt is the PISA test set, which comprises
theorems from the Archive of Formal Proofs [MacKenzie et al., 2021] and the Isabelle standard
library [Nipkow et al., 2002]. To better understand how POETRY performs in complex problems
with multiple levels, we subdivided the test set into two subsets: single-level and multi-level. The
PISA single-level subset contains problems with only one level in the ground truth human-written
proofs, whereas the PISA multi-level subset includes problems with multiple proof levels. A more
comprehensive analysis of the PISA dataset is shown in Appendix A.3. For evaluation metrics, we
follow [Jiang et al., 2022a, Yang et al., 2023] and use pass@1 as the evaluation metric, where each

3HTPS [Lample et al., 2022] achieve 57% and 41% on miniF2F valid and test set for pass@64, but they
didn’t provide the pass@1 results. Additionally, the model is fine-tuned on the miniF2F-valid with online
training, which is not a fair comparison with POETRY.

4https://artofproblemsolving.com/wiki/index.php?title=AIME_Problems_and_Solutions
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Table 1: Comparing with baseline. The table displays the pass@1 success rates of the baselines and POETRY,
The highest success rates for each set are highlighted in bold.

Success rate miniF2F-valid miniF2F-test PISA single-level multi-level

Thor w/o sledgehammer 25.0% 24.2% 39.0% - -
GPT-f Baseline 39.3% 37.3% 48.9% 65.5% 11.1%
− with sampling decoding 30.3% 31.5% 43.2% 57.8% 9.8%

POETRY 42.2% 42.2% 49.6% 65.4% 13.6%

Table 2: Comparing with state-of-the-art search-based methods on the miniF2F dataset. The table
displays the pass@1 success rates of previous works and POETRY, The highest success rates for each set are
highlighted in bold.

Success rate environment miniF2F-valid miniF2F-test

Baselines

PACT [Han et al., 2022] Lean 23.9% 24.6%
Leandojo [Yang et al., 2023] Lean - 26.5%
FMSCL [Polu et al., 2022] Lean 33.6% 29.6%
COPRA [Thakur et al., 2024] Lean - 30.7%

Thor [Jiang et al., 2022a] Isabelle 28.3% 29.9%
Thor + expert iteration [Wu et al., 2022] Isabelle 37.3% 35.2%
Thor + Magnushammer [Mikuła et al., 2023] Isabelle 36.9% 37.3%

Ours

POETRY Isabelle 42.2% 42.2%

theorem in the dataset is proved once by POETRY. Then we calculate the proportion of the theorems
being successfully proven.

4.2 Main Results

Comparison with language model-only baselines. As shown in Table 1, we compare POETRY
with baselines that only utilize language models to search for proofs. Thor w/o sledgehammer is
the language model-only version of Thor [Jiang et al., 2022a]. It does not call the sledgehammer
during the proof search. Our reproduced GPT-f Baselines outperform Thor w/o sledgehammer by
13.7% in miniF2F and 10.6% in the PISA test set. This performance boost is mostly due to using the
beam-search decoding strategy during the proof search, as we observe the performance of the GPT-f
Baseline with sampling drops by 6.8% compared with the beam-search version. This is because
the beam-search decoding method is guaranteed to produce e different proof steps for each proof
state, whereas the sampling will produce duplicate proof steps, making the actual number of proof
steps generated per expansion smaller than e. The remaining performance improvements are mostly
contributed by larger model sizes and better pertaining.

Compared with the GPT-f Baseline, we can observe the benefit of the recursive theorem proving.
POETRY outperforms GPT-f Baselines by 3.9% in the miniF2F dataset on average, and 0.7% in the
PISA test set. The modest performance gain observed in the PISA test set is primarily attributed
to the skewed distribution of problem complexity, with the majority of problems containing only a
single proof level (see Table 3). POETRY executes nearly identically to the GPT-f Baseline when
encountering proofs with only one level, resulting in similar performance within the single-level
subset. In contrast, POETRY achieves a 2.5% improvement on the multi-level subset. Furthermore,
POETRY solves a very distinct set of theorems compared with GPT-f Baseline in PISA, with 99 out
of 1109 theorem solved by POETRY can not be proved by GPT-f Baseline, taking up 4.4% in total.
This outcome well supports the effectiveness of our proposed recursive proving method. Moreover,
the gap between step-by-step approaches and POETRY does not end here. The effectiveness of
POETRY will become even more pronounced as the language models are continuously improved and
solve more complex proofs, where the bottleneck caused by searching comes to the fore yet POETRY
is demonstrated effective for searching.

Comparison with state-of-the-art methods. In Table 2, we illustrate the proportion of successful
proofs found on the miniF2F dataset. Due to the larger amount of formal data, as well as the help
of hands in ATP like the sledgehammer, the approaches using Isabelle tend to achieve a higher pass
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Figure 3: Proof length comparison between POETRY and GPT-f Baseline. The y-axis is shown in the log
scale. (a) Proof length’s histogram of found proof in miniF2F dataset. most of the proof found is within 3 steps
long, especially for GPT-f Baselines, but POETRY managed to find longer proof up to 18 proof steps in one
proof. (b) Proof length’s histogram of found proof in the PISA dataset. POETRY discovers a lot more proofs
with longer proof lengths.

proof(rule UP_car_memI[of "deg R f"])
  show "⋀n. deg R f < n ⟹ n_mult f n = 0"
    unfolding n_mult_def
    using assms
    unfolding P_def
    by (simp add: UP_car_memE(2))
  show "⋀n. n_mult f n ∈ carrier R"
    using assms
    unfolding n_mult_def
    by (simp add: assms cfs_closed)
qed

Proof level 2

Proof level 2

Proof level 1

lemma(in UP_cring) n_mult_closed:
  assumes "f ∈ carrier P"
  shows "n_mult f ∈ carrier P"

(a)

proof(rule UP_car_memI[of "deg R f"])
  fix n
  assume A: "deg R f < n"
  show "n_mult f n = 0"
    unfolding n_mult_def
    proof -

proof(rule UP_car_memI[of "deg R f"])
  show "⋀n. deg R f < n ⟹ n_mult f n = 0"

Timeout after 600 seconds

Never explored

}
}

Path 1

Path 2

lemma(in UP_cring) n_mult_closed:
  assumes "f ∈ carrier P"
  shows "n_mult f ∈ carrier P"

(b)

Figure 4: Case comparison between POETRY and GPT-f Baseline. (a) Recursive proof found by POETRY
in 71.2 seconds, the proof contains two proof levels. (b) Failure-proof paths found by the GPT-f Baseline. GPT-f
Baseline failed to find proof due to timeout after 600 seconds. We select two different failure proof paths found
by GPT-f Baseline.

rate compared with approaches using Lean environments. Our proposed POETRY significantly
outperforms all such approaches. POETRY outperforms Thor+Magnushammer by 5.1% on average,
the highest performance on the miniF2F dataset with the search-based method at pass@1.

Notably, the recursive proving method is orthogonal to these baseline approaches. It can be further
improved with the use of Sledgehammer or Magnushammer [Jiang et al., 2022a, Mikuła et al.,
2023], running expert iteration on the training set [Polu et al., 2022, Wu et al., 2022], using retrieval
augmented proof step generation techniques [Yang et al., 2023], or even better search algorithm in
each level [Wang et al., 2023c, Lample et al., 2022]. As these are not the focus of the current paper,
we leave the integration for future work.

4.3 Analysis

Can POETRY find longer proof? Figure 3 compares the proof length of proofs discovered by the
GPT-f Baseline and POETRY in both the miniF2F dataset and the PISA test set. It can be observed
that the proof lengths found by POETRY are longer than those found by the GPT-f Baseline. The
average proof length increases from 1.47 to 2.13 in the miniF2F dataset and 1.62 to 2.09 in the
PISA test set. Prominently, the maximum proof length increases from 3 to 18 compared with the
GPT-f Baselines in the miniF2F dataset, and from 10 to 26 in the PISA test set. This proof length is
unattainable without a recursive proving method. By comparison, the maximum proof length found
by Leandojo in the miniF2F test set is 4, with an average proof length of 1.35. Therefore, it’s evident
that POETRY expands the possibility of discovering longer proofs and addressing more challenging
problems.
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Case study. As illustrated in Figure 4, we compare the proof found by the POETRY with the failed
attempts by the GPT-f Baseline. The theorem n_mult_closed states that if a polynomial f belongs
to the carrier set of polynomials P , then the operation n_mult applied to f results in a polynomial
that also belongs to P . As shown in Figure 4(a), the proof found by the POETRY contains two
levels, marked with different shades of blue. The first level is completed by first showing two main
properties: (i) Zero polynomial condition (the first show statement in Line 2): For any integer n
greater than the degree of f , n_mult fn must be zero. (ii) Closure under carrier (the second show
statement in Line 7): For any integer n, the result n_mult fn must be within the carrier set R. When
proving the first level, the detailed proof of these two properties will be skipped with the sorry tactic.
After the first level of the proof has been found, POETRY searches for the proof of these properties
one by one in the next level. In contrast, the GPT-f Baseline failed to find valid proof for this problem,
resulting in a search timeout after reaching 600 seconds of time limit. Two failure search trajectories
are selected and shown in Figure 4(b). For proof path 1, the proof searches astray and tries to utilize
a more complex way to prove the first property, resulting in a timeout. The GPT-f Baseline also
identified the first two steps in POETRY’s proof. However, this proof path never had the chance
to be further explored before the timeout occurred. From this case, we can see that by recursively
proving the theorem, the proof with 11 steps is broken down into 3 proof sketches with a maximum
length of 4. Therefore, POETRY effectively prevents the proof search from wasting too much time
on searching for useless mid-step conjectures.

5 Related Works

Search-based neural theorem proving. Our work is closely related to prior work on step-by-
step search-based nerual theorem proving. GPT-f [Polu and Sutskever, 2020] is the first to apply
transformer-based language models to generate single-step action for theorem proving in Metamath.
With the ability to generate arbitrary proof text, modern ATPs advance drastically and are capable of
proving theorems in complex ITPs like Lean [de Moura et al., 2015] or isabelle [Paulson, 1994]. The
follow-up work PACT [Han et al., 2022] proposes auxiliary pre-training tasks for action-generating
language models. [Polu et al., 2022] uses expert iteration and syntactic data to bootstrap the language
model’s performance. Most recently, HTPS [Lample et al., 2022] plugs in Monte-Carlo Tree
Search [Silver et al., 2016] in this framework and applies an online version of expert iteration. DT-
Solver [Wang et al., 2023c] improves HTPS by enabling backtracking during proof search, increasing
the robustness. LeanDojo [Yang et al., 2023] retrieve possible premise to assist the generation of
a single proof step. Lisa and Thor [Jiang et al., 2021, 2022a] tackle theorem proving in Isabelle,
which combines traditional ATPs and language models to suggest proof steps, in a neuro-symbolic
way. All theorem-proving method introduced above proves theorems step-by-step, with short-sighted
heuristics guiding the search to find a correct proof path.

Nerual theorem proving with a large language model. Another popular paradigm for automated
theorem proving resorts to large pre-trained language models for proof context generation in an in-
context-learning manner, without finetuning on formal mathematic datasets. DSP [Jiang et al., 2022b]
uses OpenAI codex LLM [Chen et al., 2021] to generate the entire proofs guided by informal proof.
It suffers from hallucination problems with LLM and requires multiple attempts for each problem to
ensure correctness. Lyra [Zheng et al., 2023] improves on DSP and uses GPT-4’s auto-correction
ability to correct previous error attempts. Blualr [First et al., 2023] also uses Minerva [Lewkowycz
et al., 2022] for whole proof generation using the initial theorem statement. To prevent hallucination,
Balar finetunes a small model that uses error messages to correct the generated faulty proof. MUS-
TARD [Huang et al., 2024] generates the problem and the solution concurrently with ChatGPT and
uses Lean as a verifier to check the correctness of the generated content.

Subgoal-based AI agents. Another domain that is closely related to our paper is subgoal-based
AI agents [Wang et al., 2023b,a, Wei et al., 2023]. These agents decompose the major tasks into
small sub-objectives and tackle them one by one. However, most AI agents do not focus on formal
mathematic problems, which require compiling the rules of formal environments. LEGO-Prover
[Wang et al., 2023b] approaches the theorem-proving problem by decomposing the target into
subgoal lemmas and building the proof block by block. However, not all the subgoals can be easily
decomposed into lemmas. Many mid-conjectures or subgoals are specific to the current problem
and involve shared variables defined in the previous proving process, making them unsuitable for
extraction as lemmas, or sometimes impossible to extract as lemmas. kSubS [Czechowski et al.,
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2024] utilizes a subgoal generation model to produce mid-step proof states and employs a policy
model to generate paths in between. However, the generated proof must adhere to the generated
proof states, thus the method cannot be applied to more complex real-world datasets like miniF2F.
Moreover, the proposed subgoal generator constrains the ability of the policy model to explore freely
and find solutions beyond predefined subgoals.

6 Limitations

The proposed method proves theorems recursively by producing a verifiable proof sketch at each
level. Although this leads to consistent performance improvements, there is no theoretical guarantee
that it will avoid the problem of infinite action space for each proof step generation and the problem
of exponential search space with respect to the depth of the search tree. Furthermore, applying the
framework of POETRY to other formal languages such as Lean or Coq is straightforward but would
require a non-neglectable amount of engineering efforts on some language-specific aspects.

7 Conclusion

In this work, we introduce a novel theorem-proving method, POETRY, which recursively proves the
theorem in a level-by-level manner. POETRY searches for a verifiable proof sketch in each level,
focusing on proving the target theorem, conjecture, or subgoals in the current level, and utilizes a
special sorry tactic to defer detailed proofs of mid-conjectures or subgoals. POETRY introduces
a fundamentally different theorem-proving paradigm to the community, preventing short-sighted
proof searches that easily go astray. The recursive dataset decomposes long proofs into short proof
sketches within a tractable search space. Extensive experiments show that POETRY can indeed
improve the pass rates on the miniF2F dataset and PISA test set, and can find longer proofs compared
to step-by-step approaches.
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and Y. Wu. Magnushammer: A transformer-based approach to premise selection. arXiv preprint
arXiv:2303.04488, 2023. 6, 7, 8

T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: a proof assistant for higher-order logic.
Springer-Verlag, Berlin, Heidelberg, 2002. ISBN 3540433767. 6

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774. 6

L. C. Paulson. Isabelle a Generic Theorem Prover. Springer Verlag, 1994. 3, 9

L. C. Paulson. Three years of experience with sledgehammer, a practical link between automatic and
interactive theorem provers. In R. A. Schmidt, S. Schulz, and B. Konev, editors, Proceedings of the
2nd Workshop on Practical Aspects of Automated Reasoning, PAAR-2010, Edinburgh, Scotland,
UK, July 14, 2010, volume 9 of EPiC Series in Computing, pages 1–10. EasyChair, 2010. doi:
10.29007/TNFD. URL https://doi.org/10.29007/tnfd. 6

S. Polu and I. Sutskever. Generative language modeling for automated theorem proving. CoRR,
abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393. 1, 2, 3, 6, 9

S. Polu, J. M. Han, K. Zheng, M. Baksys, I. Babuschkin, and I. Sutskever. Formal Mathematics
Statement Curriculum Learning. (arXiv:2202.01344), Feb. 2022. doi: 10.48550/arXiv.2202.01344.
URL http://arxiv.org/abs/2202.01344. arXiv:2202.01344 [cs] type: article. 1, 2, 6, 7, 8, 9

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, Jan. 2016.
ISSN 1476-4687. doi: 10.1038/nature16961. URL https://www.nature.com/articles/
nature16961. Number: 7587 Publisher: Nature Publishing Group. 9

A. Thakur, G. Tsoukalas, Y. Wen, J. Xin, and S. Chaudhuri. An in-context learning agent for formal
theorem-proving, 2024. 1, 6, 7

G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar. Voyager: An
open-ended embodied agent with large language models. arXiv preprint arXiv: Arxiv-2305.16291,
2023a. 9

H. Wang, H. Xin, C. Zheng, L. Li, Z. Liu, Q. Cao, Y. Huang, J. Xiong, H. Shi, E. Xie, J. Yin, Z. Li,
H. Liao, and X. Liang. Lego-prover: Neural theorem proving with growing libraries, 2023b. 1, 6, 9

H. Wang, Y. Yuan, Z. Liu, J. Shen, Y. Yin, J. Xiong, E. Xie, H. Shi, Y. Li, L. Li, et al. Dt-solver:
Automated theorem proving with dynamic-tree sampling guided by proof-level value function. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 12632–12646, 2023c. 1, 2, 8, 9

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou. Chain-of-
thought prompting elicits reasoning in large language models, 2023. 9

M. Wenzel et al. The isabelle/isar reference manual, 2004. 3

12

http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.29007/tnfd
https://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2202.01344
https://www.nature.com/articles/nature16961
https://www.nature.com/articles/nature16961


Y. Wu, A. Q. Jiang, W. Li, M. Rabe, C. Staats, M. Jamnik, and C. Szegedy. Autoformalization with
large language models. Advances in Neural Information Processing Systems, 35:32353–32368,
2022. 6, 7, 8

J. Xiong, J. Shen, Y. Yuan, H. Wang, Y. Yin, Z. Liu, L. Li, Z. Guo, Q. Cao, Y. Huang, C. Zheng,
X. Liang, M. Zhang, and Q. Liu. Trigo: Benchmarking formal mathematical proof reduction for
generative language models, 2023. 1

K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. Prenger, and A. Anand-
kumar. Leandojo: Theorem proving with retrieval-augmented language models. arXiv preprint
arXiv:2306.15626, 2023. 1, 2, 6, 7, 8, 9

L. Zhang, S. Lu, and N. Duan. Selene: Pioneering automated proof in software verification, 2024. 3

C. Zheng, H. Wang, E. Xie, Z. Liu, J. Sun, H. Xin, J. Shen, Z. Li, and Y. Li. Lyra: Orchestrating dual
correction in automated theorem proving, 2023. 6, 9

K. Zheng, J. M. Han, and S. Polu. miniF2F: a cross-system benchmark for formal Olympiad-level
mathematics. Sept. 2021. URL https://openreview.net/forum?id=9ZPegFuFTFv. 3, 6

13

https://openreview.net/forum?id=9ZPegFuFTFv


A More Details on POETRY

The outline of the Appendix A is as follows:

• More details on our proposed recursive best-first search.
• Implementation details for POETRY, including the hyperparameters for the methods and

machine configuration.
• More details on the newly extracted PISA dataset, and additional analysis of the statistics

and characteristics of the dataset.

Appendix B discusses the broader impacts of POETRY.

Appendix C includes more examples of found theorems by POETRY.

A.1 Details on Recursive BFS

In this section, we discuss more details on the recursive BFS algorithm. Section 3.2 only introduces
the overall process of how recursive BFS runs, and no detailed introduction on status update rules,
pause and continue of the recursive BFS and terminate conditions. We discuss each in detail below.

Status update rules. The status update happens whenever a node finishes its expansion, which adds
all the newly created nodes as children. The update will propagate from the expanded node all the
way to the root node. A node’s status will be marked as FAILED if all the children are FAILED,
and a node will be marked as PROVED or HALF-PROVED if any of its children is PROVED or
HALF-PROVED. Additionally, when POETRY encounters a sorry edge there exists special update
rules. If a node is connected to a PROVED node with a sorry edge, and the next level root node
is OPEN, this means the mid-conjectures/subgoals represented by the sorry edge have not been
proved, the node will be marked as HALF-PROVED (Figure 2(a)). As illustrated in Figure 2(c), if
the sub-root node has failed, the original HALFPROVE status of the node will be updated to OPEN.
And if the sub-root node is PROVED, the original HALFPROVE status of the node will be marked as
PROVED (Figure 2(f)).

Pause and continue of recursive BFS. Figure 2(a)-(d) illustrates the pause and continue of recursive
BFS. During the proof search, whenever a proof sketch is found (Figure 2(a)), the current level of the
best-first search will be paused, and POETRY will find the last unproved sorry edge and recursively
call the best-first search algorithm to find the proof for the next-level root node attached in the sorry
edge (Figure 2(b)). If the next-level best-first search fails to find proof for the sub-root node (The
status of the sub-root node is marked as FAILED), POETRY will update the status of the search
tree and continue the paused best-first search for the current level and try to find new proof sketches
(Figure 2(c)-(d)).

Terminate conditions. The proof search of the current level will terminate and return to the upper-
level proof search under these scenarios: 1) A complete proof for this level is found, which means
all the middle conjectures or subgoals have been proven by the deeper levels of proof searches,
recursively. The root node status of the current level proof search is marked as PROVED. 2) For
proof search in a level higher than 1, a timeout of 120s has been reached. The root node status will
be marked as FAILED. 3) All the nodes in the proof tree have been explored and no proof has been
found, the root node status will also be marked as FAILED. Additionally, a global timeout of 600s is
added to the entire recursive BFS, ensuring each theorem will not be searched longer than 5 minutes.
We can finally obtain complete proof for the target theorem after the first level best-first search return
as proved, as shown in Figure 2(f).

A.2 Implementation Details

In this work, we use a decoder-only transformer [Devlin et al., 2019] architecture pre-trained with
proof-pile v1.1 dataset [Azerbayev et al., 2023], with 1.3b parameters, 24 layers, 16 attention heads,
a hidden dimension of 2048, and a GPT-2 tokenizer with 50400 vocabulary size. We use the alpaca5

codebase for finetuning the model on our recursive dataset. During fine-tuning, we use a global batch
size of 256 with 3500 steps of warmup using the AdamW optimizer. We use the cosine scheduling

5https://github.com/tatsu-lab/stanford_alpaca
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Table 3: Dataset statistics. The table displays the dataset statistics for our newly extracted PISA dataset based
on Isabelle 2022.

train valid test single-level multi-level

Number of theorems 236, 978 2, 347 2, 236 1, 558 681
Number of proof steps 3, 018, 407 27, 419 27, 653 3, 982 23, 671
Average proof length 12.7 11.7 11.8 2.4 33.5
Maximum proof length 10, 320 1, 236 1, 079 204 1079
Average proof level 1.5 1.5 1.5 1.0 2.6
Maximum proof level 26 9 10 1 10

strategy with a maximum learning rate of 3e− 4 and a minimum learning rate of 3e− 5. Our model
is finetuned with 100, 000 steps training budgets and inferences using the lowest validation loss
checkpoints with early stopping.

For the configuration of recursive best-first search. We use a global timeout of 600 seconds; each
proof step has a timeout limit of 10 seconds. The number of samples per expansion e is set to 32,
and we use beamsearch decoding strategies to sample proof steps from the language model. The
maximum number of steps for expansion is set to 128, and the maximum recursive depth for searching
deeper level proof is set to 10. For proof searches other than the first level, a local timeout of 120
seconds is also applied.

Machine configuration. We use Nvidia A800 GPU with 80GB of GPU memory for fine-tuning. The
training server has 104 CPU cores and 1024GB of CPU memory. The finetuning takes around 100
GPU hours and requires an additional 50 GPU hours to run a single evaluation on the miniF2F test
set.

A.3 Dataset Details

In this section, we further discuss the details of our newly extracted PISA dataset, including the
dataset statistics and other interesting aspects of the dataset.

Dataset Statistics. We follow [Jiang et al., 2021, 2022a] and extract data from Isabelle 2022, as well
as the corresponding version of the Archive of Formal Proof library6. We provide detailed statistics
for our fine-tuning dataset. As shown in Table 3, the newly constructed PISA dataset contains 3.02
million proof steps in the training data. In contrast, the old PISA dataset extracted by LISA[Jiang
et al., 2021] only contains 2.49 million proof steps. Another interesting factor of the dataset statistics
is the two subsets of the PISA test. The single-level test set contains 2/3 of the problems in the test
set, but only 14% of the proof step. Whereas the multi-level subset contains the remaining 86% proof
steps.

How recursive the dataset is? As illustrated in Figure 5(a), the figure shows the histogram of the
number of proof levels in a single theorem against the number of theorems. As expected most of
the theorem in the training dataset only contains one proof level, which does not require recursive
proving at all. This result matches the Pareto principle [Dunford et al., 2021] where the majority
of the problems are simple and could be tackled without the recursive proving technique. However,
it’s the challenging problems that are of most interest to us, where they can test the boundary of our
method’s actual proving ability.

How much does the search space shrink by proving the theorem recursively? As the verified
proof sketches might not always be correct due to mid-conjectures/subgoals’ proof being skipped
by sorry, we can not accurately calculate the search space is shrunk to which extent. However, we
can have a lower bound search space calculated by the ground truth proof. Figure 5(b) shows the
histogram of the number of proof steps that need to be completed until a proof/proof sketch can
pass the verification of Isabelle against the number of these proofs. For conventional step-by-step
approaches, the proof is the original one, and for POETRY, the proof is a proof sketch. We can
observe that the proof length of POETRY is substantially shifted towards a shorter proof length
per proof. On average, there are 3.3 proof steps for POETRY and 12.7 proof steps for step-by-step

6The original dataset is extracted with Isabelle 2021, resulting in x fewer theorems and x fewer lines of state
action pair.
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Figure 5: Distribution of proof level and proof length in PISA dataset. (a) Histogram of proof level in the
PISA training set. The maximum proof level can reach 26 (b) Comparison between the number of steps in the
original proof and the extracted proof sketches. By breaking the original proof into proof sketches, the proof
length is reduced substantially.

baseline per proof. And that would be 329.4 times smaller the search space per proof on average with
e = 32.

B Broader Impact

The research presented in this paper has the potential to advance automated theorem proving, AI for
Math and software engineering. The advancement can enhance the capabilities of large language
models in formal theorem proving, contributing to more reliable mathematical proof verification and
providing valuable educational resources for students and researchers. By directly releasing the code,
model and data, we aim to ensure the responsible use of our work, fostering further innovation and
maintaining high standards of data privacy and intellectual property compliance.

We anticipate no foreseeable negative societal impacts of this work.

C Examples of Found Theorem by POETRY

C.1 Examples in miniF2F Dataset

theorem amc12b_2020_p6:
fixes n :: nat
assumes h0: "9 \<le> n"
shows "\<exists>x::nat. (real_of_nat x)^2 = (fact (n + 2)

- fact (n + 1)) / fact n"
proof -

from assms
show?thesis

unfolding power2_eq_square
by (intro exI[of _ "n + 1"]) (auto simp: field_simps)

qed
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theorem mathd_algebra_422:
fixes x :: real and \<sigma>::"real \<Rightarrow> real"
assumes "bij \<sigma>"

and \<sigma>:"\<forall> x. \<sigma> x = 5 * x - 12"
and "\<sigma> (x + 1) = (Hilbert_Choice.inv \<sigma>) x"

shows "x = 47 / 24"
proof -

from assms
have "bij \<sigma>"

by (auto intro!: bijI simp: bij_def)
show?thesis
proof (rule ccontr)

assume "x \<noteq> 47/24"
thus False

using assms
by (subst (asm) bij_inv_eq_iff) auto

qed
qed

theorem mathd_algebra_441:
fixes x :: real
assumes "x \<noteq> 0"
shows "12 / (x * x) * (x^4 / (14 * x)) * (35 / (3 * x)) = 10"

proof -
from assms
show?thesis

apply (simp add: divide_simps)
apply algebra
by (simp add: power4_eq_xxxx power2_eq_square)

qed
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theorem mathd_algebra_487:
fixes a b c d :: real
assumes "b = a^2"

and "a + b = 1"
and "d = c^2"
and "c + d = 1"
and "a \<noteq> c"

shows "sqrt ((a - c)^2 + (b - d)^2)= sqrt 10"
proof (rule real_sqrt_unique)

show "(sqrt 10)\<^sup>2 = (a - c)\<^sup>2 + (b - d)\<^sup>2"
proof -

let?r = real_of_rat
show?thesis
proof (rule power2_eq_imp_eq)

show "((sqrt 10)\<^sup>2)\<^sup>2 = ((a - c)\<^sup>2 + (b - d)\<^sup>2)
\<^sup>2"

proof -
from assms
show?thesis

unfolding power2_eq_square
apply simp
apply (auto simp: field_simps)
by sos

qed
qed (auto simp: algebra_simps)

qed
qed (simp add: power2_eq_square)

C.2 Examples in PISA Dataset

lemma rev_morphs: "two_binary_morphisms (rev_map g) (rev_map h)"
proof

show "rev_map g (u \<cdot> v) = rev_map g u \<cdot> rev_map g v" for u v
proof (simp add: rev_map_def)

show "rev (g (rev v \<cdot> rev u)) = rev (g (rev u)) \<cdot> rev (g (rev
v))"

using swap
by (simp add: g.morph)

qed
show "rev_map h (u \<cdot> v) = rev_map h u \<cdot> rev_map h v" for u v
proof (simp add: rev_map_def)

show "rev (h (rev v \<cdot> rev u)) = rev (h (rev u)) \<cdot> rev (h (rev
v))"

using swap
by (simp add: h.morph)

qed
qed
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lemma lset_iterates:
"lset (iterates f x) = {(f ^^ n) x|n. True}"

proof
show "lset (iterates f x) \<subseteq> {(f ^^ n) x |n. True}"
proof(cases "x \<in> lset (iterates f x)")

case True
thus?thesis

by(auto simp add: in_lset_conv_lnth)
next

case False
thus?thesis

by (auto simp: in_lset_conv_lnth)
qed
show "{(f ^^ n) x |n. True} \<subseteq> lset (iterates f x)"
proof safe

fix n
show "(f ^^ n) x \<in> lset (iterates f x)"
proof(induct n arbitrary: x)

case 0
thus?case

by(subst iterates) simp
next

case Suc
thus?case

by(subst iterates)(simp add: o_def funpow_swap1)
qed

qed
qed

lemma neg_distr_cond_bset_eq: "neg_distr_cond_bset (=) (=) tytok"
unfolding neg_distr_cond_bset_def
apply(rule predicate2I)
apply transfer
subgoal for A B

apply(rule bexI[where x=B])
subgoal

apply safe
subgoal

unfolding rel_set_OO
by(auto simp add: rel_set_def OO_def)

subgoal
unfolding rel_set_OO
by(auto simp add: rel_set_def OO_def)

done
by(simp)

done
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lemma frag_cmul_distrib: "frag_cmul (c+d) a = frag_cmul c a + frag_cmul d a"
proof -

show?thesis
proof (rule poly_mapping_eqI)

fix x
show "lookup (frag_cmul (c + d) a) x = lookup (frag_cmul c a + frag_cmul

d a) x"
proof (cases "x \<in> keys a")

case True
thus?thesis

unfolding lookup_add
using lookup_frag_cmul
by (auto simp: algebra_simps)

qed (auto simp: in_keys_iff lookup_add in_keys_iff)
qed

qed

lemma SETId: assumes "x |\<in>| X" shows "(Id SET X) |@| x = x"
proof -

have "x \<in> Obj (Op SET)"
using assms
apply (simp add: OppositeCategory_def)
by(simp add: SET_def SET’_def MakeCat_def)

thus?thesis
proof -

assume 1: "x \<in> obj\<^bsub>Op SET\<^esub>"
show?thesis
proof(simp add: SET_def)

show "id\<^bsub>MakeCat SET’\<^esub> X |@| x = x"
proof(cases "x |\<in>| X")

case True
thus?thesis

apply(simp add: SET’_def)
apply (simp add: MakeCat_def)
by(rule ZFfunApp)

qed (simp add: assms)
qed

qed
qed
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lemma (in encoding_wrt_barbs)
indRelRSTPO_impl_SRel_and_TRel_weakly_reflect_barbs:

fixes SRel :: "(’procS \<times> ’procS) set"
and TRel :: "(’procT \<times> ’procT) set"

assumes reflection: "rel_weakly_reflects_barbs (indRelRSTPO SRel TRel) (
STCalWB SWB TWB)"

shows "rel_weakly_reflects_barbs SRel SWB"
and "rel_weakly_reflects_barbs TRel TWB"

proof -
have "rel_weakly_reflects_barbs SRel SWB \<and> rel_weakly_reflects_barbs

TRel TWB"
proof (rule conjI)

show "rel_weakly_reflects_barbs SRel SWB"
using reflection rel_with_source_impl_SRel_weakly_reflects_barbs[where

Rel="indRelRSTPO SRel TRel" and SRel="SRel"]
by (simp add: indRelRSTPO.source[where SRel="SRel" and TRel="TRel"])

show "rel_weakly_reflects_barbs TRel TWB"
using reflection rel_with_target_impl_TRel_weakly_reflects_barbs[where

Rel="indRelRSTPO SRel TRel" and TRel="TRel"]
by (simp add: indRelRSTPO.target[where SRel="SRel" and TRel="TRel"])

qed
thus "rel_weakly_reflects_barbs SRel SWB" and "rel_weakly_reflects_barbs

TRel TWB"
by simp_all+

qed

21


