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a b s t r a c t

Commonsense question answering has attracted increasing attention as a challenging task requiring the
human reasoning process of answering questions with the help of abundant commonsense knowledge.
Existing methods mostly resort to large pre-trained language models and face many difficulties when
dealing with the out-of-scope reasoning target, and are unaware of explainable structured information.
In this paper, we explore explicitly incorporate external reasoning paths with structured information
to explain and facilitate commonsense QA. For this purpose, we propose a PathReasoner to both
extract and learn from such structured information. The proposed PathReasoner consists of two main
components, a path finder and a hierarchical path learner. To answer a commonsense question, the
path finder first retrieves explainable reasoning paths from a large-scale knowledge graph, then the
path learner encodes the paths with hierarchical encoders and uses the path features to predict the
answers. The experiments on two typical commonsense QA datasets demonstrate the effectiveness of
the PathReasoner. The case study gives insightful findings that the reasoning paths provide explainable
information for the question answering through the PathReasoner.

© 2021 Elsevier B.V. All rights reserved.
h
f

1. Introduction

The task of question answering (QA) is widely explored for
esting the natural language comprehension as well as the rea-
oning capability of intelligent systems. For instance, the
nowledge-based question answering (KBQA) [1–3] requires the
A systems to read a simple text then reason over a knowledge
raph for answering a question. The open-domain question an-
wering [4–6] needs the QA systems to retrieve open-domain
ocuments according to the question and to answer the ques-
ion with the retrieved information. The multi-hop question an-
wering [7,8] requires the QA systems to reason over multiple
ocuments for answering the question.
Recently, commonsense question answering is proposed [9–

2] with challenging commonsense reasoning test while answer-
ng the questions. The commonsense reasoning requires QA sys-
ems to simulate the human-like capability that makes associa-
ions and reasons between the questions and the comprehensive
orld knowledge. However, different from existing reasoning
A that the knowledge bases are provided by the datasets and
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highly consistent with the questions, in commonsense QA, the
key knowledge information is not provided, including the re-
ferred commonsense knowledge and the logic of answering the
questions.

The main challenges of commonsense QA are two folds. First,
there is no ground truth commonsense knowledge for the ques-
tions. The QA systems have to resort to external knowledge bases
to find evidence for the questions. The sources and formats of
the external evidence are diverse. For example, the evidence
can be retrieved from news, Wikipedia, or large-scale knowledge
graphs, whereas the formats include structured such as triples or
unstructured as the articles. Besides, the evidence can whether
be retrieved from existing sources with rules [14] or generated
with pre-trained generators conditioned on the questions [15].
The quality of the external evidence, such as the consistency with
the questions, restricts the performance of QA systems. Second,
the reasoning from the questions to the answers is mostly not
intuitive. The QA systems are required to reason over questions
via multiple steps to obtain the correct answers. An example is
illustrated in Fig. 1. The question is about what ‘‘children’’ need
to ‘‘grow up’’ ‘‘healthy’’. The five answer options are ‘‘watch tele-
vision’’, ‘‘wash dishes’’, ‘‘come home’’, ‘‘need care’’ and ‘‘fast food ’’.
From the figure, the extracted subgraphs show that the ‘‘children’’
entity is directly related to ‘‘wash dishes, ‘‘watch television’’, ‘‘come
ome’’ and ‘‘need care’’. ‘‘children’’ is indirectly related to fast
ood through the ‘‘Children –candy–junk food–fast food" pathway.
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Fig. 1. The main challenge of the Commonsense QA task is that the relations between the question and the answer options are not intuitive, and therefore multi-hop
easoning processes are needed. The question is taken from the CommonsenseQA dataset [9] and the entity graph is a sub-graph of the ConceptNet [13].
owever, for node ‘‘need care’’, the pathway ‘‘healthy–sound–need
are’’ provides background knowledge on the need for care to
tay healthy, and the pathway ‘‘children– off spring–need care’’
rovides background knowledge about the need for care off-
pring. While such background knowledge is common knowledge
o human beings, it is of great significance for machines.

To obtain the commonsense evidence, Rajani et al. [15] man-
ally annotate explanations for each commonsense question. Lin
t al. [14] construct schema graphs based on the questions. Lv
t al. [16] extract knowledge from multiple sources including
onceptNet [13] and Wikipedia. Asai et al. [17] introduce a
ew graph-based recurrent retrieval approach that learns to re-
rieve reasoning paths over the Wikipedia graph to answer multi-
op open-domain questions. [18] generates context-dependent
lauses, which form a dynamic Knowledge Graph (KG) on-the-fly
or commonsense reasoning. As for the models, existing methods
re mainly characterized into two types: (1) rule-based methods,
2) deep learning models. The rule-based methods are intuitive
uch as choosing the answer with top cosine similarity to the
uestion. Such methods act as baselines, and most of them do
ot involve external commonsense knowledge. Deep learning
odels incorporate commonsense knowledge implicitly or ex-
licitly. The implicit approaches [9,10] incorporate the knowledge
y pre-training, such as masking the entities in the evidence [19]
hen using commonsense-related supervision [20]. The explicit
ethods encode the commonsense knowledge with memory net-
orks [21] or graph models [14,16,22]. Li et al. [23] explore three
oken-level injection methods to extend BERT to allow flexible
ncorporation of external knowledge and introduce a masking
echanism for a token-level multi-hop relational search to filter
xternal knowledge. Due to the lack of capability to capture
ymbolic logic, Wang et al. [24] propose to understand logical
ymbols and expressions in the text to arrive at the answer.
owever, the external commonsense knowledge from current
ethods is not explainable enough since the reasoning from

he question to the correct answer is not intuitive and mostly
equires multi-hop reasoning. Therefore, structured information
hould be involved.
In this paper, we propose a PathReasoner that extracts and

earns explainable commonsense knowledge over question an-
wering. It consists of two main components, a path finder and a
ierarchical path learner. The path finder extracts the explainable
aths based on the commonsense questions. The hierarchical
2

path learner then encodes the multi-hop entity paths, conducts
soft selection among the paths, and predicts the answer.

The main contributions of this paper can be summarized as
follows:

• We propose a reasonable and explainable framework to ex-
plicitly incorporate external reasoning paths with structured
information to explain and facilitate commonsense QA.

• We use a Hierarchical Path Learner including an intra-path
encoder and an inter-path encoder to reason the path over
questions.

• The experiments on two typical commonsense QA datasets
demonstrate the effectiveness of our proposed PathRea-
soner.

The rest of the paper is organized as follows. In Section 2, we
briefly review the related works. In Section 3, we introduce our
method. We first give an overview in Section 3.1, then introduce
the path finder module in Section 3.2 and the path learner module
in Section 3.3. After that introduce the answer prediction module
in Section 3.4. Experimental results and discussions are addressed
in Section 4. Section 5 concludes the paper and describes the
future works.

2. Related works

2.1. Question answering with reasoning

A large number of question answering datasets test QA sys-
tems’ multiple reasoning capabilities. WSC [25] ask single binary
questions that contain two proper nouns and one pronoun. The
QA systems are required to recognize one of the two proper
nouns that the pronoun is referring to according to the sentence.
bAbI [3] measures QA systems via chaining facts and simple rea-
soning. For this purpose, each sample contains one question and
three to four sentences as background. The answers are mostly
the entities in the background sentences or yes/no selections.
The reasoning types for the answering include counting, negation,
size reasoning, time reasoning, and so forth. Free917 [2] and
WebQuestion [1] provide questions and their logical forms. QA
systems need to answer the questions by reasoning over the
Freebase2 entities.

2 www.freebase.com.

http://www.freebase.com
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Besides, the open-domain QA such as MCTest [4], CNN/Daily
Mail [5] and NewsQA [6] provide multiple documents for each
of the questions, and the evidence for answering the questions
needs to be selected by the QA systems from one of the docu-
ments. The multi-hop QA such as HotpotQA [7] and WikiHop [8]
need the QA systems to reason over multiple documents which
associate the questions with the answers. Reasoning with such
abundant information is more challenging.

Different from previous QA tasks, the recently proposed com-
monsense QA datasets need external commonsense knowledge
which is not provided by the questions [9,10,12]. Besides, the
reasoning from the questions to the answers is not intuitive,
and therefore answering the questions needs multi-hop rea-
soning over the unlabeled commonsense knowledge. Common-
senseQA [9] ask questions with commonsense in daily life, and
the answer options are mostly entities seen in daily life. WIQA [10]
contains more challenging ‘‘what-if’’ questions about scientific
facts. It provides a short paragraph for each question describ-
ing some natural phenomenon, but such paragraphs mostly do
not cover the information needed for answering the questions.
Therefore external commonsense knowledge is still needed for
the answering. From this point of view, commonsense QA is
more challenging than previous QA datasets. And the existing QA
systems are limited in solving this task.

2.2. QA systems for reasoning

QA systems conduct the reasoning with multiple approaches,
for example, memory networks and graph models. The first group
of QA systems saves and selects the knowledge with memory
networks [26,27]. DMN [28] uses a dynamic memory network
to form episodic memories then generate relevant answers. KV-
MemNN [29] defines the memory slots as key–value pairs and it
answers the questions by querying the pairs with the questions.
REM-Net [30] use a memory network with an erasure opera-
tion to select the useful information from the referred knowl-
edge. [31] integrates multiple knowledge sources such as Con-
ceptNet, Wikipedia, and the Cambridge Dictionary and proposes
an answer choice-aware attention mechanism to fuse all hidden
representations.

The second group of systems uses graph models. [32] incor-
porates the question with knowledge subgraphs or paths that
carry information such as relation among concepts or showmulti-
hop reasoning process. [33] introduces a heterogeneous graph
with different granularity levels of information including can-
didates, documents and entities in specific document contexts
and employs Graph Neural Networks (GNN) based message pass-
ing algorithms to accumulate evidence on the heterogeneous
graph. [16] extracts both structured knowledge which is from
the ConceptNet and unstructured knowledge from Wikipedia and
converts the Wikipedia knowledge into structured. The knowl-
edge features are encoded and updated with a graph convo-
lutional network. [14] builds semantic graphs of the questions
based on the large-scale knowledge graph, and the graph fea-
tures are learned by a graph convolutional network following by
an LSTM [34]. [35] proposes an AMR-ConceptNet-Pruned (ACP)
graph pruned from a full integrated graph to interpret the rea-
soning path and predict the correct answer. In multi-domain,
the GRUC [36] depicts the image with multiple graphs in multi-
ple modalities, including semantic graph, visual graph, and fact
graph. It then encodes the graphs with graph convolution, af-
ter which selects and integrates the graph knowledge with a
memory-based module.
3

2.3. Large-scale knowledge graphs

Several large-scale knowledge graphs are built for demonstrat-
ing the word semantics or entity relations. Such graphs provide
supplementary knowledge for the reasoning. For example, Word-
Net [37] and ConceptNet [13] are semantic networks that con-
necting words with semantic relations. The relations in WordNet
are mostly lexical relations such as hyperonymy, hyponymy, or
‘‘IsA’’ relations. The relations in ConceptNet are more compre-
hensive, including causal relationship (‘‘Causes’’), purpose (‘‘Used-
For’’), location (‘‘AtLocation’’) and so forth. The words/phrases in
such semantic networks mostly denote entities or their descrip-
tions, therefore the relations describe commonsense knowledge
in the world. Besides, there are knowledge graphs representing
relations between events rather than entities. Such knowledge
graphs include ATOMIC [38] and ASER [39]. The graph nodes
in ATOMIC or ASER are events such as ‘‘X repels Y’s attack’’, ‘‘I
have lunch’’. The relations between the events are cause–effect,
reason, result, and so forth. Such eventuality knowledge graphs
also carry commonsense knowledge. In this paper, the com-
monsense knowledge we need for our solution is mostly entity-
based. Therefore we extract the knowledge from the large-scale
ConceptNet.

3. PathReasoner

The proposed PathReasoner solves commonsense QA by rea-
soning over explicit explainable reasoning paths that simulate
the process of human reasoning from the question to the answer
options. The overall architecture of the PathReasoner is demon-
strated in Fig. 2. It is composed of two main modules, a path
finder and a hierarchical path learner. The path finder retrieves
explainable reasoning paths from a large-scale knowledge graph,
whereas the hierarchical path learner encodes the retrieved rea-
soning paths, learns the path features for commonsense answer
prediction.

3.1. Overview

Given a commonsense question with a question sentence
along with several answer options, the PathReasoner conducts
the reasoning then gives the probabilities of each answer option
so as to choose the correct answer to the question. The reasoning
process includes finding paths from the question to each answer
option given the knowledge graphs, after which learning the path
features over the questions. Building the explicit reasoning paths
resorts to a large-scale knowledge graph. The PathReasoner first
extracts key entities from the question sentences, then align the
key question entities and the answer options with the entities
in the knowledge graph. When finding reasoning paths, the path
finder searches for neighbor entities of the question entities
as well as the answer entities by the entity relations in the
knowledge graph. The multi-hop searching returns end-to-end
entity triples as paths from the question entities to the answer
entities. For learning the retrieved reasoning paths, the hierar-
chical path learner groups the paths by their shared endpoint
answer options. The paths in the same group together are first
encoded by an intra-path encoder, then encoded by an inter-path
encoder, after which the path features are merged into a feature
representing the current answer option based on the question
and the reasoning paths. The features for all answer options are
fed into a classifier, which returns the probabilities for the answer

prediction.



X. Zhan, Y. Huang, X. Dong et al. Knowledge-Based Systems 235 (2022) 107612

t
o
r
r
t
w
o

a
t
s
o
W
f
g
s

f
e
e
i

p
T

Fig. 2. The proposed PathReasoner consists of two main components: (1) the path finder retrieves reasoning paths for the commonsense question, (2) the path
learner hierarchically encodes the reasoning paths for commonsense reasoning.
w

3.2. Path finder

In this paper, the reasoning paths are directed from the ques-
ion to each answer option, bridging the question and the answer
ptions with explicit reasoning processes. The reasoning paths
esort to large-scale knowledge graphs built with abundant entity
elations so that they are essentially end-to-end entity knowledge
riples. The starting entity in a path is always from the question,
hereas the ending entity is always from one of the answer
ptions.
To obtain such reasoning paths, we design the path finder

s demonstrated in Fig. 3. Given a question and its answer op-
ions, the path finder first extracts key entities from the question
entence. Then the extracted question entities and the answer
ptions are aligned with the entities in the knowledge graph.
ith the aligned question entities and answer options, the path

inder then conducts a breadth-first search in the knowledge
raph from both the question end and the option ends, until both
earching paths meet and form complete reasoning paths.
For the key-entity extraction and alignment, the path finder

irst conducts lemmatization to the question sentence, so that
ach token in the question is reduced to its base form. For
xample, the question in Fig. 3 ‘‘Where do adults use glue sticks?’’
s reduced to ‘‘Where do adult use glue stick?’’. Then the n-grams in
the reduced question sequence are compared to the knowledge
graph entities. The matched n-grams are saved as question key
entities. Similarly, the answer options are first lemmatized, then
matched to the knowledge graph entities.

The question entities are taken as starting points of the rea-
soning paths, whereas the answer options are taken as endpoints.
The breadth-first search is conducted from both ends simultane-
ously. To control the time and space complexity, in the meantime
to ensure the quality of reasoning paths without unnecessary de-
tours, we first set the maximum hop H of the retrieved reasoning
aths and set the maximum neighbors N in each searching step.
he path finder searches ⌈H/2⌉ steps from both the question

entities and the answer entities. When two sub-paths share the
last node, they are concatenated after popping out one of the
last nodes. The complexity of this bidirectional breadth-first path
finding is O(N⌈H/2⌉).

For a preliminary estimation of the reasoning path quality,
the path finder evaluates the correlation of each reasoning path
4

and the question sentence with BERTScore [40]. The reasoning
paths are then sorted with the BERTScore. The paths with low
BERTScores are filtered out with a threshold.

3.3. Hierarchical path learner

Given the retrieved reasoning paths, the objective of the Path
Learner is to estimate and select the paths with the path features.
Such learned path features are used for downstream multi-choice
answer prediction. The architecture of the Path Learner is demon-
strated in Fig. 4. The path features are encoded and learned with
hierarchical encoders, including an intra-path encoder and an
inter-path encoder. The input of the Hierarchical Path Learner
is a group of reasoning paths ending in the same answer op-
tion, whereas the output of the Hierarchical Path Learner is the
corresponding path features for each input reasoning path.

3.3.1. Intra-path encoder
The intra-path encoder is to encode each reasoning path along

with the question sentence, so that to obtain the path features in
the context of the question. To do this, the reasoning paths are
first regarded as token sequences whereas the end-to-end entity
triples are flattened to entity and relation sequences. For example,
the reasoning path ‘‘(revolving door, at_location, mall),
(mall, at_location, New York)’’ is flattened to ‘‘revolving
door at location mall at location New York’’. The question
sentence and the flattened path sequence are then concatenated
into one sequence delimited by special tokens (e.g., [CLS] and
[SEP] for BERT [41]). For example, the question in Fig. 1 and the
above-mentioned flattened path are concatenated as ‘‘[CLS] A
revolving door is convenient for ... at a what ? [SEP]
revolving door at location mall at location New York
[SEP]’’. All the concatenated question-path pairs are fed into a
shared encoder Eintra. In practice, Eintra is a pre-trained language
model such as BERT [41] or RoBERTa [42], and the outputting first
token embedding (e.g., [CLS] for BERT) is taken as the contextual
intra-path embedding:

e(k) = e(k)0 = Eintra([t
(k)
0 ; t (k)1 ; ...; t (k)L ]), (1)

here e(k) ∈ Rdmodel and dmodel is the embedding size. t (k)∗ are the
tokens in the input sequence, L is the sequence length, k ∈ K and
K is the number of paths with shared endpoints.



X. Zhan, Y. Huang, X. Dong et al. Knowledge-Based Systems 235 (2022) 107612

p
o
(
t
t

3

w
t
s
a
p
F
w

[

Fig. 3. The bidirectional breadth-first path finding from the question to one of the answer options. The search processes are simultaneously conducted from the
question end and the answer end. Once the retrieved sub-paths from both ends meet up with a shared entity node (green line), they are joined into complete
reasoning paths.
Fig. 4. The hierarchical path learner with an intra-path encoder and an inter-
ath encoder. The inputs are the reasoning paths that end in the same answer
ption, which are concatenated with the question sentence with special tokens
e.g., [CLS], [SEP]). The outputs are path features for each path, which are
hen merged by summation. The intra-path encoders encoding each path share
he weights.

.3.2. Inter-path encoder
While the intra-path encoder focuses on single path features

ith the question context and encodes the paths independently,
he following inter-path encoder conducts interactions among the
et of paths, which obtain higher-level path features and conduct
soft selection with weights calculated by softmax among the
aths. The more relevant the question path, the larger the weight.
or example, the path ‘‘glue sticks - stick -wood - desk - office’’
hose weight is small is irrelevant in Fig. 3.
Given the intra-path features E ∈ RK×dmodel , where E =

(e(0))⊤; (e(1))⊤; ...; (e(K ))⊤] and K is the number of paths with
5

shared endpoints, the inter-path encoder conducts multi-head
inter-path self-attention over the path features:

InterAtth(E) = softmax(
(E⊤WQ

h )(EW K
h )

√
dmodel

)EW V
h , (2)

MultiHead(E) = Concat(InterAtt1, . . . , InterAttH )WO, (3)

where H is the number of heads and h ∈ {1, 2, . . . ,H}, WQ
h , W K

h ,
W V

h , WO
∈ Rdmodel×dmodel .

Therefore the multi-head inter-path self-attention outputs the
inter-path features:

[(a(0))⊤; (a(1))⊤; ...; (a(K ))⊤] = MultiHead(E), (4)

where a(∗) ∈ Rdmodel are the inter-path features for each path and
K is the number of paths.

3.3.3. Multiple-choice path features
The intra-path encoder and the inter-path encoder are applied

to the groups of paths with shared end-point answer options
separately. We denote Ac = [(a(0)c )⊤; (a(1)c )⊤; ...; (a(K )c )⊤] as the cth
group of path features. Each group of path features are merged
into a single output feature as:

ac =

K∑
k

(a(k)c ), (5)

where ac ∈ Rdmodel . Then with C multiple choices, the hierarchical
encoders output {a0, a1, . . . , aC } where C is the number of answer
options.

3.4. Answer prediction

With the path features for each answer option, the multiple-
choice answer prediction is conducted with a linear classification
and return the probabilities Pr of choosing the answer options:

Pr = softmax([a0; a1, . . . ; aC ]W + b), (6)

where [; ] indicates feature concatenation, W ∈ Rdmodel×C and
b ∈ RC are weights and bias of the classifier.
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xperimental results compared with multiple groups of methods on the WIQA
ataset. ‘‘In’’, ‘‘out’’ and ‘‘no’’ indicates the ‘‘in-para’’ questions, ‘‘out-of-para’’
uestions, ‘‘no-effect’’ questions in WIQA test set respectively. ‘‘Total’’ indicates
he results on the overall test set (%).
Method In Out No Total

Rule-based Models
Majority [10]∗ 45.46 49.47 0.55 30.66
Polarity [10]∗ 76.31 53.59 0.27 39.43
Adaboost [43]∗ 49.41 36.61 48.42 43.93

Deep Models
Decomp-Att [10]∗ 56.31 48.56 73.42 59.48
BERT-Base 70.57 58.54 91.08 74.26
BERT-Large 73.40 63.88 90.52 76.69
RoBERTa-Base 73.58 61.41 92.27 76.64
RoBERTa-Large 74.91 67.08 90.20 78.12

Explicit Reasoning Paths
MemN2N [21] + paths 38.50 38.01 39.52 38.85
BERT-Base + paths 70.57 61.00 90.72 75.12
BERT-Large + paths 73.40 63.88 90.52 76.69
RoBERTa-Base + paths 75.85 64.94 89.80 77.26
RoBERTa-Large + paths 76.98 68.88 90.44 79.32

Ours
PathReasoner (BERT-Base) 73.02 61.66 91.71 76.22
PathReasoner (BERT-Large) 74.91 66.17 91.79 78.42
PathReasoner (RoBERTa-Base) 77.55 70.03 89.96 79.55
PathReasoner (RoBERTa-Large) 77.92 70.69 91.55 80.69

4. Experiments

4.1. Datasets and evaluation metrics

CommonsenseQA The CommonsenseQA dataset [9] is built
pon the ConceptNet [13]. It contains 12,247 questions where
ach question is a single sentence along with five answer options.
he answer options are entities in the ConceptNet, whereas the
uestion sentences are manually built with other related en-
ities. The questions are randomly split into 9,741/1,221/1,140
raining/dev/test data.

WIQA The WIQA dataset [10] also contains multiple-choice
uestions with three answer options. The questions are about
ommonsense such as natural phenomenon. For each question, a
rocedural text is provided as a reference to answering the ques-
ion. The total 40,695 questions is randomly split into 29,808/
,894/3,993 training/dev/test data. The questions within the train-
ng/dev/test split may share the procedural text, but questions
rom different splits do not share. The test set is further divided
nto three types of questions including the ‘‘in-para’’ questions,
he ‘‘out-of-para’’ questions, and the ‘‘no-effect’’ questions ac-
ording to whether the questions are derived from or can be
nswered by the given procedural text.
Evaluation metrics Both of the datasets are multiple-choice

A tasks and are evaluated by the accuracy of choosing the cor-
ect answer options. Besides, since the WIQA test set is separated
nto three subsets (‘‘in-para’’, ‘‘out-of-para’’, ‘‘no-effect’’), it also
valuates the prediction accuracy for each subset. The prediction
ccuracy can be calculated via

cc =
Correct Prediction Sample Numbers

All Sample Numbers
. (7)

4.2. Implementation details

4.2.1. Details of the path finder
Key entities extraction We use an off-the-shelf toolkit,

TAGME3 [44], to extract key entities from the question sentences.

3 https://tagme.d4science.org/tagme/.
6

Table 2
Experimental results compared with multiple groups of methods on the
CommonsenseQA dataset (%).
Methods Dev Acc

Deep Models
RoBERTa-Base [41] 65.36
RoBERTa-Large [42] 76.24

Explicit Reasoning Paths
MemN2N [21] + paths 26.78
BERT-Base + paths 57.82
BERT-Large + paths 64.37
RoBERTa-Base + paths 66.26
RoBERTa-Large + paths 76.58

Ours
PathReasoner (BERT-Base) 59.38
PathReasoner (BERT-Large) 64.54
PathReasoner (RoBERTa-Base) 68.46
PathReasoner (RoBERTa-Large) 77.81

The TAGME toolkit is capable of identifying short phrases and
links them to Wikipedia pages, therefore the extracted phrases
are mostly meaningful entities. There is a parameter control-
ling the density of identified phrases. In our experiments, we
manually tune the parameter for obtaining more reasonable
extractions, and we set the parameter to 0.1.

Searching for reasoning paths The large-scale knowledge
graph we use for the path searching is ConceptNet [13]. The
extracted question key entities are aligned with the entities in
ConceptNet as the starting points of the reasoning paths. The
alignment is conducted by lemmatization of both the question
key entities and the ConceptNet entities, and the entities are
aligned once they share a base form. Besides, the answer options
are also aligned with the ConceptNet entities in the same man-
ner. When conducting the bidirectional breadth-first search, the
maximum hop of reasoning paths is set to 4, and the maximum
of neighbors in each search step is set to 200.

4.2.2. Details of the hierarchical path learner
The input sequence length to the path learner is 128. For

the intra-path encoder, we fine-tune the BERT [41] and the
RoBERTa [42] as two variant experimental settings. We denote
the corresponding PathReasoner variants as PathReasoner (BERT)
and PathReasoner (RoBERTa) respectively. The input sequences
to the PathReasoner variants use the special tokens correspond-
ing to the pre-trained models, which means the input to the
PathReasoner (BERT) are ‘‘[CLS] path [SEP] question ∥ option
SEP’’, and the input to the PathReasoner (RoBERTa) are ‘‘<s>
path </s> question ∥ option </s>’’, where ‘‘∥’’ denotes sequence
concatenation. For the inter-path encoder, the number of heads is
8. The learning rate for training the PathReasoner (BERT) is 1e-5,
whereas for training the PathReasoner (RoBERTa) is 5e−6. The
training is warmed up in the first 10% steps. The parameters are
updated with an Adam [45] optimizer. The models are trained 7
epochs with a batch size of 8.

4.3. Compared methods

We compare our PathReasoner with three groups of methods:
(1) rule-based methods, (2) deep models without the reasoning
paths, (3) deep models with the reasoning paths.

Rule-based methods Majority [10] takes the most frequent
answer option in the training set as the prediction. Polarity [10]
calculates the frequencies of comparatives in the questions. Ad-
aboost [43] learns bag-of-words features for classification. Vec-
Sim [9] predicts the answers according to the cosine similarity be-
tween the question and the answer options based on GloVe [46]
or Numberbatch [13] embeddings.

https://tagme.d4science.org/tagme/
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Fig. 5. Ablation study on the number of reasoning paths. ‘‘* - In’’ means the model evaluated on the WIQA ‘‘in-para’’ test questions. ‘‘* - Out’’ means the model
evaluated on the WIQA ‘‘out-of-para’’ test questions. ‘‘* - No’’ means the model evaluated on the WIQA ‘‘no’’ test questions. ‘‘* - Total’’ means the model evaluated
on the WIQA ‘‘total’’ test questions. ‘‘* - CQA’’ means the model evaluated on the Commonsense dev set.
Deep models without the reasoning paths Decomp-Attn [47]
onducts decomposable attention to facilitate sentence-level rea-
oning. LM1B [9] pre-trains a language model on the One Bilion
ords Benchmark [48]. The pre-trained language models such as
ERT [41], RoBERTa [42] and GPT [49]) are trained upon abundant
orpora and possess a certain amount of commonsense knowl-
dge. But such pre-trained language models do not aware of
tructured information such as explicit reasoning paths.
Deepmodels with the reasoning paths The end-to-end mem-

ry networks [21] put our retrieved reasoning paths into the
emory slots and learn the path features by encoding and se-

ecting the paths based on the commonsense questions with the
emory mechanism. The pre-trained language models (BERT [41]
nd RoBERTa [42]) are fine-tuned by taking the question-path
airs as model inputs. It means that the external reasoning paths
re concatenated with the commonsense questions into com-
ined sequences.

.4. Experimental results

.4.1. Experimental results on WIQA
The results on WIQA are demonstrated in Table 1. It is shown

hat adding the external reasoning paths to the deep models
esults in performance improvement. This indicates the effective-
ess of the reasoning paths retrieved by the PathFinder mod-
le. For example, RoBERTa-Large with external reasoning paths
eaches an accuracy of 79.32%, 1.2% over the pre-trained RoBERTa-
arge without the reasoning paths fine-tuning. The end-to-end
emory network results with the reasoning paths are relatively
oor. This may due to the large difference in the number of
arameters between the LSTM-based memory networks and the
ransformer-based language models, as well as the pre-training
f the language models.
7

The PathReasoner further improve the performance. The
PathReasoner (RoBERTa-Large) reaches a total accuracy of 80.69%,
accuracies of ‘‘in-para’’ / ‘‘out-of-para’’ / ‘‘no-effect’’ questions
of 77.92% / 70.69% / 91.55%. The ‘‘no-effect’’ accuracy does not
outperform the RoBERTa-Base result, and one of the probable
reasons is that the ‘‘no-effect’’ questions require less external evi-
dence than the other two questions. The PathReasoner (RoBERTa-
Base), PathReasoner (BERT-Large), pathReasoner (BERT-Base) also
outperform their corresponding deep models with the external
reasoning paths.

4.4.2. Experimental results on CommonsenseQA
The same observations are found in the CommonsenseQA

dataset. The experimental results are demonstrated in Table 2.
The explicit reasoning paths on the end-to-end memory net-
work are still poor. But the BERT and RoBERTa models with the
external reasoning paths outperform the language models. The
PathReasoner further improves the performances. Therefore the
way the PathReasoner encodes and selects the reasoning paths is
effective. Rather than indistinguishably encoding and learning the
path features as the compared methods, the PathReasoner learns
to softly select the reasoning paths so that the paths being more
relevant or with higher quality are allocated with higher weights.
This results in a more reasonable use of the paths.

4.5. Ablation study

4.5.1. Ablation study on the hierarchical path learners
We first conduct ablation studies on the components of the

PathReasoner. we remove the inter-path encoder from the hier-
archical encoders and directly merge the output features from
the intra-path encoder to represent the answer option features.
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able 3
blation study on the components of the PathReasoner (%).

WIQA CommonsenseQA

In Out No Total Dev

PathReasoner (BERT-Base) 73.02 61.66 91.71 76.22 59.38
w/o inter-path encoder 73.77 58.37 92.91 75.52 58.15

PathReasoner (RoBERTa-Base) 77.55 70.03 89.96 79.55 68.46
w/o inter-path encoder 73.40 65.93 90.36 77.46 67.73

The results are shown in Table 3. The experiments are conducted
on two backbones, i.e., BERT-Base and RoBERTa-Base. The results
on both PathReasoner (BERT-Base) and PathReasoner (RoBERTa-
Base) demonstrate performance drop without the inter-path en-
coder. Besides, the same conclusions can be driven from ex-
periments on the WIQA dataset and CommonsenseQA dataset.
Therefore the effectiveness of the inter-path encoder is justified.

Further removing the intra-path encoder will bring the model
ack into the compared language models with the path inputs.
he results can be found in Tables 1 and 2. This proves the
enefits of the intra-path encoder.

.5.2. Ablation study on the number of reasoning paths
We then investigate the number of reasoning paths that each

ime the PathReasoner can learn. During the experiments, we set
he number of reasoning paths to 2, 3, 4 respectively, and the
xperimental results are demonstrated in Fig. 5.
For the CommonsenseQA dataset, the augmentation of the

easoning paths facilitates the PathReasoner better for the an-
wer prediction, since the accuracy grows when the number of
easoning paths increases. For the WIQA dataset, the situation
s more complicated. For example, the PathReasoner (BERT-Base)
ith four reasoning paths performs much better on the ‘‘in-para’’
uestions than using two or three paths, but three reasoning
aths are sufficient for the ‘‘out-of-para’’ questions. The PathRea-
oner (RoBERTa-Base) with two reasoning paths performs better
n general.

.6. Case study

In this section, we further explore the capability of the
athReasoner, specifically the behavior of the intra-path encoder
nd the inter-path encoder. In the hierarchical path learner, the
ntra-path encoder learns each reasoning path independently,
nd the inter-path encoder learns the inter-path features by
onducting a soft selection among the paths. We visualize the
eights learned by both encoders.
8

4.6.1. Intra-path encoder behavior
We visualize the triple weights learned by the intra-path

encoder of the PathReasoner (BERT-base) that is trained on the
CommonsenseQA dataset, which is demonstrated in Fig. 6.

The question on the left-hand side contains key entities ‘‘sit-
ting quitely’’, ‘‘eyes’’ and ‘‘moving ’’, whereas the answer option is
‘‘reading ’’. The intra-path encoder provides weights for each triple
in the reasoning paths from the question entities to the answer
option. Among the triples, the triple (eyes, UsedFor, reading) ob-
tains the highest weight. Since this triple indicates a reasonable
relation from ‘‘eyes’’ to ‘‘reading ’’, and provides an explanation to
the answer option ‘‘reading ’’, it is intuitive that it obtains such
high weight. Besides, the triple (quiet, AtLocation, a library) in
another reasoning path has a weight of 0.33, indicating that this
entity relation is significant in this reasoning path. It is this triple
that bridges a description of the atmosphere (i.e., ‘‘quiet ’’) in the
question and the place that matches the description in answer
option (e.g., ‘‘a library’’ for ‘‘reading ’’).

The question in the right-hand side is about the location of
‘‘a bass fiddle’’, and the correct answer option is ‘‘music store’’.
The explicit reasoning paths indicate the reasoning process from
‘‘a bass fiddle’’ to ‘‘music store’’. The path ‘‘(bass, RelatedTo, instru-
ment), (instrument, AtLocation, music store)’’ first reduces ‘‘a bass
fiddle’’ to its category, which is an ‘‘instrument ’’, then leads to
the answer option ‘‘music store’’ by the commonsense entity rela-
tion that an ‘‘instrument ’’ usually appears in a ‘‘music store’’. The
triple weight of ‘‘(instrument, AtLocation, music store)’’ achieves a
high 0.348, through which we find that this triple provides key
information and help locating the answer option.

4.6.2. Inter-path encoder behavior
We then explore the soft path selection by the inter-path en-

coder. The attention weights for the reasoning paths are demon-
strated in Fig. 7.

The question asks about the causal relationship between ‘‘boil-
ng point ’’ and ‘‘evaporation’’, and the answer option is ‘‘more’’
mong the three options (‘‘(A) more, (B) less, (C) no effect’’). This
nswer indicates that reaching the ‘‘boiling point ’’ is positively
elated to the phenomenon ‘‘evaporation’’. The inter-path encoder
oftly selects relevant paths from four reasoning paths (demon-
trated in the caption of Fig. 7). As shown in the figure, the first
wo paths obtain higher weights, which indicates that these two
aths are more relevant to the question.
The question in the right-hand side asks the causal relation-

hip between ‘‘magma’’ and ‘‘large mountains’’. The correct answer
ption is ‘‘more’’. The four reasoning paths are presented in the
aption of Fig. 7. The inter-path encoder selects the last two
aths from the four. The entity ‘‘volcano’’ in the last two paths
rovides information to the causal relationship between ‘‘magma’’
nd ‘‘large mountains’’. On the contrary, ‘‘structure’’ and ‘‘mass’’
n the first two paths are more are less relevant to the causal
elationship.
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Fig. 7. Behavior of the inter-path encoder. Left: Question: ‘‘suppose during boiling point happens, how will it affect more evaporation’’.. hoices: ‘‘more", ‘‘less’’
nd ‘‘no effect’’. Correct answer option: ‘‘more’’. The reasoning paths: (1) ‘‘(boiling point, RelatedTo, liquid), (liquid, RelatedTo, evaporation)’’, (2) ‘‘(boiling point,
elatedTo, concentration), (concentration, RelatedTo, evaporation)’’, (3) ‘‘(boiling point, RelatedTo, desuperheat), (desuperheat, RelatedTo, vapour), (vapour, RelatedTo,
vaporation)’’, (4) ‘‘(boiling point, HasContext, chemistry), (chemistry, HasContext, cryophorus), (cryphorus, RelatedTo, evaporation)’’. Right: Question: ‘‘suppose more

magma is forced up happens, how will it affect larger mountains’’. Correct answer option: ‘‘more’’. The reasoning paths: (1) ‘‘(magma, RelatedTo, structure),
structure, RelatedTo, mountain), (mountain, RelatedTo, large)’’, (2) ‘‘(magma, RelatedTo, mass), (mass, RelatedTo, mountain), (mountain, RelatedTo, large)’’, (3)
‘(magma, RelatedTo, volcano), (volcano, RelatedTo, mountain), (mountain, RelatedTo, large)’’, (4) ‘‘(magma, RelatedTo, volcano), (volcano, RelatedTo, mountain)’’.
. Conclusion and future works

In this paper, we explore solving commonsense question an-
wering with explainable reasoning paths. To do this, we propose
PathReasoner that extracts, selects, and learns explainable rea-
oning paths before answering the questions. The PathReasoner
onsists of a path finder that performing bi-directional breadth-
irst searching in a large-scale knowledge graph to retrieve rea-
oning paths and a hierarchical path learner that softly selecting
he paths with intra-path and inter-path features. The reasoning
aths facilitate the commonsense question answering, according
o the experimental results. Besides, they explain the questions,
s shown in the case study. In future work, we will attempt to
mprove PathReasoner as a more flexible system, where the path
inder and the path learner better adapt to each other.
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