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Yinya Huang , Graduate Student Member, IEEE, Lemao Liu , Kun Xu , Meng Fang ,
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Abstract—Textual logical reasoning, especially question-
answering (QA) tasks with logical reasoning, requires awareness
of particular logical structures. The passage-level logical relations
represent entailment or contradiction between propositional
units (e.g., a concluding sentence). However, such structures are
unexplored as current QA systems focus on entity-based relations.
In this work, we propose logic structural-constraint modeling to
solve the logical reasoning QA and introduce discourse-aware
graph networks (DAGNs). The networks first construct logic
graphs leveraging in-line discourse connectives and generic logic
theories, then learn logic representations by end-to-end evolving
the logic relations with an edge-reasoning mechanism and updating
the graph features. This pipeline is applied to a general encoder,
whose fundamental features are joined with the high-level logic
features for answer prediction. Experiments on three textual
logical reasoning datasets demonstrate the reasonability of the
logical structures built in DAGNs and the effectiveness of the
learned logic features. Moreover, zero-shot transfer results show
the features’ generality to unseen logical texts.

Index Terms—Natural language processing, logical reasoning,
question answering, multi-turn dialogue reasoning, graph neural
networks, supervised learning, zero-shot learning.
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I. INTRODUCTION

NATURAL language understanding in progress is introduc-
ing investigation of machines’ reasoning capabilities. The

recent anticipated logical reasoning requires advanced compre-
hension of uncovering hidden logical structures. A represen-
tative task is logical reasoning QA [2], [3]. It collects ques-
tions from standardized exams such as GMAT and LSAT. Each
question provides a passage, several answer options, and a
question sentence about logical relations, structures, or falla-
cies. To predict the correct answer, machines need to identify
the conclusion and premises in the text and understand how
they support or contradict each other. Another representative is
multi-turn dialogue reasoning [4], which requires the machine
to predict the next utterance that is logically consistent with the
conversation.

In principle, logical structures consist of two critical factors,
logical components, and logical relations. The core logical
components include conclusion and premises, usually complete
sentences or subordinate clauses. The logical relations, on the
other hand, are mainly entailment, refutation, or contradiction
between these sentences. Moreover, the key phrases in the
statements indicate inference patterns. Practically, an example
is illustrated in Fig. 1. To find the flaw in the argument, one first
needs to identify the conclusion and premises. Indicated by the
clue words such as “conclude”, “if”, and “then”, the third sen-
tence is the conclusion, whereas the first two sentences provide
supporting premises. Indicated by the connectives and the key
terms as highlighted, the premises are further decomposed into
two entailing structures. From the repeating key terms, one can
find the inference patterns A→ B and ¬A→ ¬B in the two
premises, respectively. According to the context, Premise 2 is
derived from Premise 1, which then derives the conclusion of
¬B. However, the reasoning in this argument contradicts the law
of contraposition, which is A→ B � ¬B → ¬A. This leads to
the correct option A. In contrast, one can hardly answer this
question regardless of the logical structure.

However, many existing deep models often neglect how to
mine such appropriate logical structures, and consequently,
is hard to learn logic features to handle complex reasoning.
For example, traditional deep QA systems [5], [6], [7] and
retrieval-based dialogue systems [8], [9] learn to match key
entities between the passage and the question. Though mastering
previous tasks, they only perform slightly better than random
in logical reasoning. More recent QA systems [10], [11], [12],
[13] construct discrete structures according to co-occurrence
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Fig. 1. An example of logical reasoning QA (left) and the logical structure-
based solution (right). Inference patterns are found by linguistic clues. The
logical units are the conclusion or premises, which are the sentential text spans.
The highlighted key terms indicate the logical variables in logical reasoning.

and coreference of named entities and simulate multi-hop rea-
soning [14], [15] with graph neural networks [16]. Similarly,
numerical reasoning systems [17] encode numerical relations
between numbers with the topology of graphs. Moreover, current
Fact-Checking models [18], [19] and NLI models [20], [21],
[22] focus on semantic matching for better knowledge retrieval
or estimating the inference type between sentence pairs. In con-
trast, solving logical reasoning requires awareness of inference
patterns beyond knowledge. Therefore, current structures and
reasoning processes are insufficient for solving textual logical
reasoning, as the core logical structure includes passage-level
relations over clause-like units.

On the other hand, recent advances in transformer-based
pre-trained language models (PLMs) [23], [24], [25], [26],
[27] have witnessed great success in extensive natural language
tasks [28], [29], [30], but fail logical reasoning [2], [3], [4]. The
PLMs are trained on large numbers of unlabeled corpora, and
the transformer-based architecture with multiple self-attention
layers facilitates the encoding of contextualized representations.
They learn syntactic and semantic structures in an implicit
manner [31]. Besides, several works [21], [22], [32] incorporate
explicit syntactic or semantic structural constraints into PLMs
and further improve the representations. However, the high-
lighted token correlations do not guarantee appropriate logical
components and relations. Moreover, although the community
further observes some reasoning capability [33] from these
pure transformer-based models, it is not sufficient for advanced
reasoning.

Therefore, several questions are remained open: How to con-
struct logical structures to benefit the systems for textual logical
reasoning? And how to better learn logic representations?

To this end, we propose discourse-aware graph networks
(DAGNs) to focus on inference patterns and learn general logic
representations. To do this, DAGNs construct logical structure

from the plain text as structural constraints, then learns logic
representations by end-to-end evolving the logic relations in
the graphs and updating the graph features. Generally speaking,
the logic graphs are built via linguistic clues and logic theories
so that are easily applied to new text. The logic representation
learning applies an edge-reasoning mechanism over the con-
structed graphs, then conducts graph reasoning to update the
logic graph features, which leverages fundamental embeddings
from a general encoder such as PLM. Specifically, the logic
graph construction uses discourse connectives such as “because”
and “if” [34] as text span delimiters. They indicate the logical
relations and delimit the texts into clause-like logical units,
which is in line with the intuition in informal logic theories [35],
[36]. The delimited text spans are regarded as logical reasoning
units. The logic graphs are formed with text spans as nodes,
connected by linguistic and logical edges.

Logic representation learning is a graph reasoning process. It
first discovers advanced logical relations from the constructed
logic graphs, for instance, multi-hop relations with different
edge types. The relation discovery is an iterative edge selection
and propagation procedure inspired by the previous meta-path
generation model [37]. Given the updated logical relations, it
then initializes the graph features with token embeddings, then
performs graph reasoning to aggregate the node embeddings
by a node-weighted graph convolutional network. The output
multi-hop logic features are further fused with the fundamental
embeddings to provide hierarchical features for downstream
prediction. The learning process leverages underlying features
such as pre-trained contextual embeddings and merely needs a
few rounds of fine-tuning, and is therefore efficient.

We conduct comprehensive experiments on three datasets,
including two logical reasoning QA datasets [2], [3] and one
multi-turn dialogue understanding dataset [4] in both supervised
and zero-shot scenarios. In general, DAGNs outperform the
state-of-the-art models in supervised settings, showing strong
generality in zero-shot transfer. The results show that the edge-
reasoning mechanism leads to logical feature generality and
model stability. The logic graphs are proved effective for learn-
ing general and transferrable logic representations. This indi-
cates the importance of focusing on inference patterns beyond
knowledge in logical reasoning tasks.

The contributions of this paper are summarized as follows:
� We explore effective discourse-aware graph networks

(DAGNs) for textual logical reasoning. The model con-
structs logic graphs as structural constraints then learns to
identify advanced logical relations and learn logic repre-
sentations by the graphs.

� The edge-reasoning mechanism evolves the logical re-
lations to adapt the logic representation learning, which
results in feature generality and model stability.

� The proposed logic graph construction uses generic textual
clues and logic theories and is easily applied to new texts.
Meanwhile, graph-based representation learning leverages
fundamental encoding techniques; hence is handy for fine-
tuning and is widely applicable.

� Experiments on three datasets indicate that DAGNs are
superior in textual logical reasoning and provide beneficial
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logical information. Besides, DAGNs show strong gener-
ality to unseen logical questions.

II. PRELIMINARIES

A. Task: Logical Reasoning QA

Logical reasoning QA requires a machine to understand the
logic behind the text, for example, identifying the logical com-
ponents, logical relations, or fallacies.

For multiple-choice logical QA, given a logical passage, a
question, and several candidate answer options, a machine needs
to predict the answer by understanding the logic of the passage.
We give notations for convenient discussion. For a logical rea-
soning question (passage, question, options), we
denote the sequences passage, question, and option as
Sp, Sq, Sc

o, respectively, where c ∈ C, c is the candidate index
and C is the overall number of candidates. Then a machine’s
inputs areSc = [Sp;Sq;S

c
o], c ∈ C, where “;” denotes sequence

concatenation.
Similarly, for multi-turn dialogue reasoning, a machine is

given dialogue context and multiple candidate responses and
is required to give the logically correct response accord-
ing to the dialogue context. For a single dialogue (di-
alogue context, candidate responses), we de-
note the sequences dialogue context and candidate
response as Sd and Sr, respectively. The machine’s inputs
are Sc = [Sd;S

c
r ] for each c ∈ C. Predicting the answer from C

options needs to give ranking scores pc for all c ∈ C.

B. Logic Theories for Logical Reasoning QA

Logic theories study symbolic reasoning processes in daily
language use. It can be generally grouped into informal
logic [35], [36] and formal logic [38]. The informal logic
uncovers reasoning structure in context. In contrast, formal
logic extracts the language into symbolic axiomatic systems
to evaluate its validity. Both inspire the modeling for logical
reasoning QA.

1) Informal Logic: Logical Components in Arguments: In-
formal logic [35], [36] studies the structural reasoning processes
in argumentation. The structure is named argument [39]. An
example argument is:

A and B; therefore C:
Here, “A”, “B” and “C” are propositions, and“C” is a conclu-

sion drawn from the two premises “A” and “B”. Hence in this
discrete structure, conclusion and premise are two fundamental
logical components, which are usually complete sentences or
sub-sentences [40].

Inference Indicators: To uncover the logical components from
text and reconstruct the structure, informal logic has organized
frequently encountered indicators that prompt the premise or
conclusion. Representative premise indicators involve “since”,
“because”, “for”, “given that” and so forth. Meanwhile, conclu-
sion indicators include “therefore”, “so”, “consequently” and
others.

Inspired by these, we reconstruct logical structures for logical
reasoning QA by leveraging such inference indicators as text

delimiters, which segment the passage into multiple sentences or
clauses that properly are the basic reasoning units. The indicators
themselves then signify corresponding logical relations between
the units.

2) Formal Logic: Deviation of Logical Expressions: In for-
mal logic system such as first-order logic (FOL), extensive
well-formed formulae (i.e., logical expressions) are derived from
a few axioms and rules. The soundness of derivation guarantees
that the derived expressions are true if only the axioms are
true [38].

For example, in first-order propositional logic, the modus
ponens rule is as follows:

P → Q,P � Q. (1)

Thus, if α ∧ β → γ is an axiom and is true, and α ∧ β is true,
then it is derived that γ is true.

Another example is that given that we have the rule of addi-
tion:

P � P ∨Q, (2)

then say α→ β is an axiom and is true, then (α→ β) ∨ γ as a
derived expression is true.

Therefore, it is observed that in the logical expression deriva-
tion, the expressions that are derived from each other are corre-
lated only if they have shared variables, such as the α ∧ β in the
first example and the α→ β in the second one. This motivates
us to build the variable edges in the logic graph construction.

Validity of Expressions and Instantiation: If a logical expres-
sion is valid, its multiple instantiations are true as they follow the
same valid reasoning process. For instance, two instantiations
of the modus ponens rule in eq. (1) are as follows:

Example II.1 (Instantiation of modus ponens): “All men are
mortal. Socrates is a man. Therefore, Socrates is mortal:” It is
obtained by grounding P to “be_men”, and Q to “be_mortal”.

Example II.2 (Instantiation of modus ponens): “All birds can
fly. Eagles are birds. Therefore, eagles can fly:”. It is obtained
by grounding P to “be_bird”, Q to “can_fly”.

We can tell that the statements in Example II.1 and Exam-
ple II.2 are true. Albeit they are in diverse topics, as we know
that their shared reasoning skeleton, i.e., the modus ponens rule,
is valid.

Furthermore, in logical texts, the logical reasoning processes
are performed in a natural language format. The logical variables
are embedded. One of the hints for such logical variables is the
topic-related terms, which are mainly the recurring topic words
or phrases, such as the “men” and “mortal” in Example II.1 and
the “birds” and “fly” in Example II.2. Accordingly, we provide
topic-related terms detection in our graph node construction.

III. DISCOURSE-AWARE GRAPH NETWORKS

The proposed discourse-aware graph networks (DAGNs) have
two main components: logic graph construction and logic repre-
sentation learning. The logic graph construction contains strate-
gies of logical unit delimitation, topic-related term detection,
graph node arrangement, and graph edge definition. Meanwhile,
logic representation learning is a graph reasoning process that
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Fig. 2. The discourse-aware graph networks (DAGNs) pipeline mainly consists of (1) logic graph construction (2) logic representation learning. The logic graph
construction module takes a logical QA data point as input and constructs logic graphs. The logic representation learning module then performs graph reasoning
upon the constructed logic graphs. Besides, the encoder provides fundamental embeddings for the pipeline.

takes contextual encoding as input, updates features with the
logic graph constraints, merges multiple features, and is trained
end-to-end for logical QA prediction.

Section III-A introduces the overall strategy of logic graph
construction. Section III-B describes the logic representation
learning process. The overlook of DAGNs is demonstrated in
Fig. 2.

A. Logic Graph Construction

Given a logical reasoning question (passage, ques-
tion, options) or (dialogue context, candi-
date responses), which is formalized as Sc, c ∈ C as
described in Section II-A, we construct logic graphs Gc =
{Vc, Ec}, c ∈ C.

We describe the graph node and edge definition sepa-
rately. The graph nodes are text’s segmented sentences or sub-
sentences, indicated by discourse-aware connectives. Each node
is further attached with topic-related terms and is assigned a
node type. As for the graph edges, discourse-connective edges
and variable edges link the nodes differently. The overall con-
struction is illustrated in Fig. 3.

1) Nodes via Discourse Unit Delimitation: It is studied
that clause-like text spans delimited by discourse relations
can be discourse units that reveal the rhetorical structure of
texts [34], [41]. We further observe that such discourse units
are essential logical propositions in logical reasoning, such
as premise or conclusion. As the example shown in Fig. 3,
the “while” in the passage indicates a comparison between
the attributes of the “analog system” and that of the “digital
system”. The “because” in the option uncovers that “error
cannot occur in the emission of digital signals” as a premise
to the conclusion “digital systems are the best information
systems”.

This observation is agreed with informal logic theories [35],
[36], which study uncovering logical structure from the texts
and have conventional in-line logical indicators. For example,
acknowledged premise indicators include “since”, “because”,

Fig. 3. The logic graph construction is based on in-line discourse connectives
which split the text into segments as logical units and form the graph nodes.

“given that”. Conclusion indicators include “therefore”, “so”,
“consequently”, and so forth. Most of these indicators are dis-
course connectives.

Some discourse parsers [42], [43] perform discourse unit
segmentation. However, discourse parsing is still challenging,
and the parsers are not general to new data, such as logical
reasoning questions. For example, SegBot [43] is good on the
RST-DT dataset but does not work well on the standardized exam
texts as in the ReClor dataset. Thus, we customize discourse unit
delimitation strategy for logical texts.

We use the Penn Discourse TreeBank (PDTB 2.0) [34] to
help draw discourse connectives. PDTB 2.0 contains discourse
relations that are manually annotated on the 1 million Wall Street
Journal (WSJ) corpus and are broadly characterized into “Ex-
plicit” and “Implicit” connectives. The former ones are explicitly
present in sentences such as discourse adverbial “instead” or
subordinating conjunction “because”, whereas the latter ones
are inferred by PDTB annotators between successive pairs of
text spans split by punctuation marks such as “.” or “;”. We take
all the “Explicit” connectives as well as common punctuation
marks to form our discourse-aware delimiter library, presented
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TABLE I
THE DISCOURSE-AWARE DELIMITER LIBRARY

in Table I. Each logical text is split into elementary discourse
units (EDUs) by all the delimiters in the library. The EDUs are
taken as graph nodes V .

Nodes With Topic-Related Terms: The desired key terms are
those real nouns or phrases that repeatedly appear in the text.
Such nouns or phrases are instantiations of logical variables
in propositions. As a result, replacing such terms with abstract
variables or terms in other topics does not change the process
of reasoning. For example, in Fig. 3, the first two sentences
indicate a comparison of “signal” between “analog system(s)”
and “digital system(s)”. Performing abstraction by replacing
“signal” with variable γ, “analog system(s)” with variable α,
and “digital system(s)” with variable β, the propositions are
free from the topic of electronics, but the comparison relation is
retained.

We use a sliding window to collect the recurring phrases.
Given the input logical text, stemming is first applied to handle
morphological diversity. Then, the sliding window loops over n-
grams and records the reoccurrence. Next, all the stop words and
overlapped substrings are filtered. The resulting topic-related
terms are attached to the nodes according to which text segment
they belong.

Binary Node Types: The text of logical reasoning QA con-
sists of two possible structures: (passage, question,
options) or (dialogue context, candidate re-
sponses). We regard passage or dialogue context
as context texts that carry the main logical reasoning structure,
whereas regard (question, options) or candidate
responses as candidate texts that are added to the context
texts and should remain their logical consistency.

According to the discourse unit delimitation, the graph nodes
are naturally from the context texts or the candidate texts.
Therefore, we define two disjoint and independent node sets:
context node setVu and candidate node setVv .Vu ∪ Vv = V and
Vu ∩ Vv = ∅. The interplay between the two node sets formu-
lates logical consistency between the context and the candidate
texts.

2) Edge Definition. Discourse-Connective Edges: We di-
rectly use the discourse-aware delimiters to build the discourse-
connective edges. The intuition is that the delimiters indicate
the in-line logical relations, as demonstrated in informal logic
theories [35], [36]. Therefore, the “Explicit” connectives and the
punctuation marks are taken as two types of edges, and we name

them explicit-connective edges and implicit-connective edges,
respectively. One edge is added between the EDUs before and
after each delimiter, with the edge type corresponding to the
delimiter. If “Explicit” and “Implicit” connectives are present
simultaneously, we choose only to use the “Explicit” connec-
tives. Besides, considering the disjoint node sets Vu and Vv , the
discourse-connective edges only connect nodes within the same
node-set. The edges are undirected.

As shown in Fig. 3, the two nodes EDU2 = “digital systems
cannot produce signals that... units” and EDU3 = “With... dis-
advantage” are connected with an implicit-connective edge. The
nodes EDU1 = “A signal in a pure analog system... detailed” and
EDU2 = “digital systems cannot produce signals that... units”
are joint with the explicit-connective edge when both “,” and
“while” are between them. Besides, the nodes EDU6 and EDU7

are adjacent in the input text, but there is no discourse-connective
edge between them because they are from different node sets.

As a comparison, we also try different edge linking strate-
gies for the discourse-connective edges, including random edge
linking, full-connection, and single edge type. We further dis-
cuss these strategies and their benefits to logical reasoning in
Section IV-E1.

Given the binary node setsVu andVv , we denote the adjacency
matrices of explicit-connective and implicit-connective edges
as:

AE =

(
AE

u 0u,v

0v,u AE
v

)
and AI =

(
AI

u 0u,v

0v,u AI
v

)
,

where AE
∗ and AI

∗ denote the inner-set edge linkings.
Variable Edges: Variable edges connect the disjoint context

nodes Vu and candidate nodes Vv , representing the deriva-
tions between logical propositions. The intuition is that when
the candidate nodes from the correct option are joined with
the context nodes, the logical consistency is retained, while the
intervention of the candidate nodes from the distracting options
will disturb the logic graphs.

For simulating such logical consistency as in logical expres-
sion derivation, edges are added to those EDU nodes that carry at
least one shared variable. Practically, the variables are regarded
as the tagged topic-related terms. Thus, given the disjoint node
sets, if a node pair shares a topic-related term, an edge is added
between them.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on December 03,2023 at 03:53:25 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: DISCOURSE-AWARE GRAPH NETWORKS FOR TEXTUAL LOGICAL REASONING 11673

Fig. 4. The logic representation learning process. Logic graph reasoning starts with node initialization from an encoder and produces logic representations. The
initial token embeddings and the high-level logic embeddings are fused for downstream prediction.

As illustrated in Fig. 3, EDU2 =“digital systems cannot pro-
duce signals that... units” and EDU10 =“digital systems are
the best information systems” represent two propositions, and
they share the key term “digital systems”, therefore they are
connected with a variable edge. Similarly, EDU1 =“a signal...
detailed” and EDU11 =“error cannt occur in the emission of
digital signals” share the key term “signal” and are connected
with a variable edge. The edges are undirected.

Formally, given the binary node sets Vu and Vv , for each node
pair (vu, vv), where vu ∈ Vu and vv ∈ Vv , when there is a key
term κ that κ ∈ vu and κ ∈ vv , a variable edge is added between
them. As a result, the adjacency matrix of the variable edges is:

AS =

(
0u BS

u,v

BS
v,u 0v

)
,

where BS
u,v and BS

v,u are incidence matrices between Vu and
Vv .

B. Logic Representation Learning

Given a logical question and its constructed graphs, we now
build a logic-based model that is end-to-end trained for logic
representation learning. The model takes the question and graphs
as input, encodes the input sequence, conducts edge evolving and
graph reasoning to produce logic representations, then fuses the
fundamental encodings for downstream prediction. The reason-
ing module is a plugin module to a general encoder and leverages
the contextual features. Hence the overall model only needs a few
rounds of fine-tuning for feature updates. Fig. 4 demonstrates the
learning pipeline.

1) The End-to-End Learning Pipeline: Text Inputs: For a
logical question, the input sequences Sc, c ∈ C are formulated
as described in Section II-A. Each Sc is further truncated into
tokens Sc = (sc1, s

c
2, . . ., s

c
L) where L denotes the number of

tokens.

Graph Inputs: Each Sc has a corresponding logic graph Gc.
The nodes correspond to elementary discourse units (EDUs) in
Sc, which are recorded by Dc(l) = n, a position mapping from
token position l to segment position n. n � N , l � L with L
tokens and N EDUs in total. The edges are of three types, and
the model takes their adjacency matrices {Ac,E , Ac,I , Ac,S}.

Token Encoding: The Sc, c ∈ C are individually fed into a
shared encoder E and obtain the token embeddings: E(Sc) =
(tc1, t

c
2, . . ., t

c
L), where tc∗ ∈ Rb and b is the dimension of a token

embedding.
Logic Edge Reasoning: Given the adjacency matrices

{Ac,E , Ac,I , Ac,S}, a module softly selects the edge types, then
perform matrix multiplication to propagate new edges. The soft
propagated edges are then converted into adjacency matrices
{Ac,(h)}h∈H , and H is the maximum hops of graph reason-
ing. The set of adjacency matrices are then updated with the
propagated edges Ā = {Ac,E , Ac,I , Ac,S}⋃{Ac,(h)}h∈H . As
a result, the evolved graph Ḡc contains the multi-hop inference
edges derived from hybrid logical relations. The parameters in
the soft edge selection are updated via end-to-end training.

Logic Graph Reasoning: Given the token embed-
dings (tc1, t

c
2, . . ., t

c
L) and the graph inputs Dc(l) = n,

{Ac,E , Ac,I , Ac,S} ⋃{Ac,(h)}h∈H , logic representations are
learned via graph reasoning. Node embeddings are initialized
by merging the token embeddings according to Dc(·), then
are updated via multi-step message propagation through the
adjacency matrices. Afterword, the updated node embeddings
are assigned to each token by Dc(·) again as the learned logic
representation for each token.

Feature Fusion: For each token, the learned high-level logic
representation and the fundamental contextual embedding are
fused. Furthermore, the token embeddings are pooled for down-
stream prediction. For each option c, the model obtains a pooled
embedding p̂c.

Option Ranking: Each option embedding p̂c is fed into a linear
layer to get a ranking score. Furthermore, the probabilities for
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selecting the options are obtained by a softmax function:

p̂c = Wp̂c + b, (3)

pc =
ep̂

c∑
c∈C

ep̂c . (4)

Overall Objective Function: Given single question in-
put (passage, question, options) or (dialogue
context, candidate responses), the model is end-
to-end trained by cross-entropy loss with option labels yc:

L = −
∑
c∈C

yclog(pc). (5)

2) Logic Edge Reasoning: The edge-reasoning mechanism
is demonstrated in Algorithm 1. Given a logic graph with three
edge types, we concatenate their corresponding adjacency ma-
trices with an identity matrix Ā(0) = [AE ;AI ;AS ; I]. The soft
edge selection weighted sum the adjacency matrices Ā(0), and
outputs the soft selected edges Γ(0):

Γ(0) = Ā(0) · softmax(W(0)). (6)

whereW(0) ∈ RN×N is a weight matrix initialized with normal
distribution.

Then the edge reasoning is performed in an iterative manner
and updates the final edge set Ā. During the process, another
soft edge selection is performed and yields Γ̂. Then given the
Γ̂ and the soft edge matrix from the last iteration Γ(i−1), an
edge propagation is performed by matrix multiplication between
them, and produces the i-hop soft edge matrix:

Γ(i) = Γ(i−1)Γ̂. (7)

The resulting Γ(i) is converted into a new adjacency matrix
Ā(i) if the soft edge element exceeds a threshold δ, which is
added to the final edge set Ā.

To further increase the diversity of hybrid edges, the edge
reasoning process is repeated for d times and also updates Ā. The
logic graph is then updated with the hybrid edges G = (V, E ∪
EH), where EH is the edge set corresponds to Ā.

3) Logic Graph Reasoning: This section illustrates the de-
tailed logic representation learning process. This process is con-
ducted via graph reasoning by a graph neural network. It consists
of node initialization, graph reasoning, and logic embedding
assignment for each token.

Node Initialization: The graph nodes are EDUs, therefore they
are initialized with token embeddings to leverage contextual
information. Given token embeddings (t1, t2, . . ., tL) and the
logical unit delimitations D(l) = n, the node embedding corre-
sponding to the n-th EDU (denoted as Un) is then calculated via
v
(0)
n = M(

∧
D(l)∈Un

tl), where D(l) ∈ Un denotes the tokens
in the n-th EDU and M is the merging function. Specifically,
we use a trivial M, which is sum pooling the token embeddings:
v
(0)
n =

∑
D(l)∈Un

tl.
Graph Reasoning: Given a logic graph G = (V, E),

where E = EE ∪ EI ∪ ES ∪ EH , for a node vi ∈ V , Ni =
{j|(vj , vi) ∈ E} indicates its neighbors. The node embeddings

Algorithm 1: Logic Edge Reasoning.

Input: A logic graph G with explicit-connective edges AE ,
implicit-connective edges AI , and variable edges
AS , identity matrix I , edge-extraction threshold δ,
the max hop H

Output: The set of hybrid logical edges Ā
1: // Initialization
2: Ā(0) ← [AE ;AI ;AS ; I], W(0) ← N (0, 1)
3: Γ(0) ← edgeSelection(Ā(0),W(0))
4: Ā← ∅
5: // Edge Reasoning
6: for i = 1 : H do
7: W(i) ←N (0, 1)
8: Γ̂← edgeSelection(Ā(0),W(i))
9: Γ(i) ← edgePropagation(Γ(i−1), Γ̂)

10: Ā(i) ← edgeExtraction(Γ(i), δ)
11: Ā← Ā ∪ {Ā(i)}
12: end
13: return Ā

are updated via: the explicit-connective edges EE , the implicit-
connective edges EI , the variable edges ES , and the hybrid edges
EH . The corresponding adjacency matrices are AE , AI , AS and
Ā.

For stability, we first normalize the variable matrix AS =(
0u BS

u,v

BS
v,u 0v

)
with:

B̂S
u,v = D−1u,vB

S
u,v, B̂S

v,u = D−1v,uB
S
v,u (8)

where D−1u,v is the degree matrix of BS
u,v and similar to D−1v,u.

Then node features are updated via multiple graph learning
layers to obtain multi-hop logic representations. For node vi, its
initial node embedding is v

(0)
i . Given node embedding v

(k−1)
i

from the (k − 1)-th layer, a node weight is first calculated via
linear transformation with a sigmoid function σ:

αi = σ
(
Wα

(
v
(k−1)
i

)
+ bα

)
, (9)

then message propagation is conducted by simultaneously con-
sidering three relation types and taking information from the
neighbors vj ∈ Ni:

ṽ
(k−1)
j = Wγv

(k−1)
j + bγ , (10)

ṽ
(k−1)
i =

1

|Ni|

⎛
⎝∑

j∈Ni

∑
E∈{E,I,S}

αjA
E
jiṽ

(k−1)
j

⎞
⎠ . (11)

The node embedding for the k-th layer is finished by joining
the embeddings:

v
(k)
i = ReLU

(
Wηv

(k−1)
i + ṽ

(k−1)
i + bη

)
, (12)

where Wη and bη are weight and bias respectively.
Global Graph Representation: The updated node embeddings
{vi}i∈N are fed into a dot-product self-attention layer [44] and
obtains {vG

i }i∈N , which are then weighted summed into the
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global graph representation. The weights αG
i are simply set to

1 in this case.

vG =
∑
i∈N

αG
i v

G
i . (13)

Token-Wise Logical Embeddings: The updated node embed-
dings are assigned to each token. For each l ∈ L, based on
D(l) = n, we have:

tλ
l = vn. (14)

4) Feature Fusion: After logic representation learning, each
token, now has an original token embedding, and a logical
embedding. The start-token embedding pairs to the global graph
representation vG, representing the correspondence between
the text and the structure. The embeddings are fused with a
hierarchical fusion, followed by pooling.

Hierarchical Fusion: For each token scl ∈ Sc, l � L, the fun-
damental token embeddings tl and the high-level logic embed-
dings tλ

l are added up, followed by a layer normalization [45]:

t̂l = LayerNorm(tλ
l + tl). (15)

The resulting token embedding sequence (t̂0, t̂1, t̂2, . . ., t̂L)
are further fed into a bidirectional GRU [46] with residual
structure [47] and layer normalization:

t̄l = Bi-GRU(t̂l), (16)

el = LayerNorm(t̂l + t̄l). (17)

Segment-Wise Pooling.: The hierarchically fused embeddings
(e1, e2, . . ., eL) are separated into three segments: the first-token
segment e1, the passage segment {ep∗} = (e2, . . ., eM ), and
question-option segment {eo∗} = (eM+1, . . ., eL), 1 < M < L.
The passage embeddings and the question-option embeddings
are further merged into two single embeddings ep and eo via
segment-wise attention pooling, respectively:

αp =
ee

p
m∑

m∈[2,M ] e
{ep

m} , ep =
∑

m∈[2,M ]

αpe
p
m, (18)

αo =
ee

o
m∑

m∈[M+1,L] e
{eo

m} , eo =
∑

m∈[M+1,L]

αoe
o
m. (19)

At last, the three segment-wise embeddings are integrated via
concatenation and a single-layer perceptron with normalization:

e = [e1; e
p; eo], (20)

p̂ = LayerNorm(GeLU(Wσe+ bσ)). (21)

IV. EXPERIMENT

To validate the logic graph construction and the representation
learning, we conduct experiments on three textual logical rea-
soning datasets, including logical reasoning QA and multi-turn
dialogue reasoning. We analyze and discuss graph construction
and model components in representation learning. Besides, we
conduct a generalization test among the datasets via zero-shot
learning.

A. Datasets

ReClor [2] is a multiple-choice QA dataset with 6,138 logical
reasoning questions modified from standardized tests such as
GMAT and LSAT. The questions are split into train/dev/test sets
with 4,638/500/1,000 questions respectively. ReClor contains
17 question types, including questions about logical components
(such as “Necessary Assumptions”, “Sufficient Assumptions”),
logical relations (such as “Strenghthen”, “Weaken”), reasoning
evaluation (such as “Evaluation”, “Technique”) and so forth. The
passages contain a mass of complex sentences with uncommon
words. The training set and the development set are available.
The test set is hold-out and split into an EASY subset and a
HARD subset according to the performance of the BERT-base
model [24]. The test results are obtained by submitting the test
predictions to the leaderboard. The evaluation metric is accuracy.

LogiQA [3] is also a multiple-choice QA dataset with logical
reasoning questions. It consists of 8,678 questions collected
from the National Civil Servants Examinations of China and
manually translated into English by professionals. LogiQA con-
tains 5 question types. It shares some of the reasoning types with
ReClor, for example, “Sufficient Conditional Reasoning”. The
texts are less lexically complex than that in ReClor. The dataset
is randomly split into train/dev/test sets with 7,376/651/651
samples respectively.

MuTual [4] is a multi-turn dialogue reasoning dataset that
evaluates logical reasoning in retrieval-based dialogue systems.
The response selection task has four candidate responses for
each dialogue, all relevant to the dialogue context, but only one
is logically correct. The distracting answers are highly lexically
overlapped with the context; hence it is challenging to solve
text matching solely. The modified version MuTualplus includes
a safe response (e.g., “Could you repeat that?”) among the
candidates and is more challenging in logical reasoning. The
evaluation metrics include recall at position 1 (R@1), recall
at position 2 (R@2), and Mean Reciprocal Rank (MRR) in 4
candidate responses. Since the passages are dialogues between
two speakers, this dataset has more verbal and informal texts
than ReClor and LogiQA. The dataset is randomly split into
training, development, and test sets with an 8:1:1 ratio.

B. Implementation Details

Logic Graph Construction: For multiple-choice QA (ReClor
and LogiQA), each question contains a passage, a question, and
several candidate options. Similarly, each sample contains a di-
alogue context and multiple candidate responses in the dialogue
reasoning dataset. Therefore, considering the different contexts
of the candidates, we construct logic graphs for each candidate
by pairing every candidate with the passage and the question.

Graph Reasoning: For ReClor and LogiQA, we set the max-
imum length of the input token sequence to 256. The input for-
mat is “<s> passage </s> question || option
</s>”, where <s> and </s> are the special tokens for
RoBERTa [25] model, and || denotes concatenation, following
previous works [2], [3]. And the number of stacked GNN layers
is 2 for ReClor and 3 for LogiQA. The model is optimized with
AdamW [58] with the learning rates 1e-5 for graph reasoning
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and 5e-6 for parameters. The epsilon is set to 1e-6. A linear
scheduler is used and the warmup steps are set to 4,000.

For MuTual, the maximum input length is set to 320. For the
dialogue context sequence, we insert a separator token (“</s>”
for RoBERTa and “[SEP]” for ELECTRA) between each adja-
cent utterance pair, following [57]. And the GNN iteration step
is 1. The model is optimized with AdamW [58] with a learning
rate of 4e-6 and an epsilon of 1e-8. A linear scheduler is used
and the warmup proportion is set to 1%.

For all datasets, the edge reasoning is performed in 2 hops.
The edge-extraction threshold is set to 0.25. The edge repetition
d is set to 2. The hidden sizes in GRU and perceptron are also
set to 1,024. The weight decay is set to 0.01 for all. The overall
dropout rate is 10%. The model is trained for 30 epochs with a
batch size of 16 on one Nvidia Tesla V100 GPU.

C. Results in Supervised Scenarios

1) ReClor Dataset. Compared Methods: FastText [48] and
Bi-LSTM learns semantics matching. FastText learns n-gram
features for text classification, whereas Bi-LSTM learns contex-
tual features with recurrent network architecture. Transformer-
based pre-trained language models (PLMs) learn contextual
embeddings from large-scale corpora. We also compare with
the state-of-the-art Focal Reasoner [51], LReasoner [52], and
MERIt [53]. The Focal Reasoner is a graph-based model that
builds ad-hoc graphs with entity-based nodes and coreference
edges. The LReasoner trains the PLMs with a contrastive learn-
ing framework, and the negative samples are constructed by pre-
defined logical expressions. MERIt performs domain-specific
pre-training also in a contrastive learning manner, where the
augmented data is constructed via graph meta-paths. To conduct
fair comparisons with LReasoner and MERIt, we train DAGNs
by including the augmented negative data. The resulting models
are denoted as “DAGNs + LReasoner” and “DAGNs + MERIt”,
respectively. For “DAGNs + LReasoner”, logic graphs for the
negative samples are constructed in the same manner. Then
the model is fine-tuned with the contrastive learning objective
function follows [52]. For “DAGNs + MERIt”, logic graphs
for the negative instances are constructed as usual. The model
is fine-tuned with the pre-trained checkpoints from [53]. The
compared Focal Reasoner, LReasoner, MERIt, and the proposed
DAGNs all use RoBERTaLarge as the backbone PLM for a fair
comparison.

Results: Table II demonstrates the results on the ReClor
dataset. The DAGNs (RoBERTaLarge) outperform Focal Rea-
soner (RoBERTaLarge) in both ReClor and LogiQA, demonstrat-
ing the effectiveness of the logic graph-constrained learning.
Moreover, the results of “DAGNs + LReasoner (RoBERTaLarge)”
and “DAGNs + MERIt (RoBERTaLarge)” also outperform their
counterparts. This indicates that the structural constraints are
still beneficial regardless of training schemes. Further, compared
to the PLM counterpart RoBERTaLarge, DAGNs (RoBERTaLarge)
show significant improvements. This indicates that the logic
graphs provide useful information beyond the contextual em-
beddings learned from the plain texts, which is beneficial to rea-
soning. Moreover, the improvements on the test-HARD set are

TABLE II
EXPERIMENTAL RESULTS ON RECLOR DATASET. ACCURACIES

(%) ARE REPORTED. TEST-E AND TEST-H REPRESENT THE EASY
AND HARD SET OF RECLOR TESTING, RESPECTIVELY

significant. DAGNs (RoBERTaLarge) achieve 46.79%, which is
comparable to the strong LReasoner (RoBERTaLarge) and MERIt
(RoBERTaLarge) with augmented data. “DAGNs + LReasoner
(RoBERTaLarge)” and “DAGNs + MERIt (RoBERTaLarge)” also
show great improvements over LReasoner (RoBERTaLarge) and
MERIt (RoBERTaLarge), respectively. The overall observations
indicate the effectiveness of DAGNs and the structural logic rep-
resentations are beneficial for challenging reasoning questions.

2) LogiQA Dataset. Compared Methods: The word match-
ing [54] and sliding window [55] perform lexical matching
between the passage-question pair and candidate answers. Deep
QA systems, including Stanford Attentive Reader [5], Gated-
Attention Reader [6], and Co-Matching Network [7] calculate
semantic similarity or use fine-grained attention mechanisms to
match the context and the candidate answers. The performances
are around chance, which indicates that the lexical or seman-
tic matching is insufficient for catching the logic behind the
texts. Transformer-based pre-trained language models (PLMs)
perform better than lexical or semantic matching, but the results
are still inferior. It is indicated that the powerful contextual
embeddings partially help the logical reasoning QA, but the
inferiority of the lack of logical structure is obvious. We also
compare with the state-of-the-art methods Focal Reasoner [51],
LReasoner [52], and MERIt [53]. Similar as in the ReClor
dataset, the compared Focal Reasoner, LReasoner, MERIt, and
the proposed DAGNs all use RoBERTaLarge as the backbone
PLM for a fair comparison.

Results: Table III shows the results on the LogiQA dataset.
DAGNs (RoBERTaLarge) also outperform the Focal Reasoner
(RoBERTaLarge) on the LogiQA test set. Moreover, The DAGNs
(RoBERTaLarge) also outperform the data-augmented LReasoner
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TABLE III
EXPERIMENTAL RESULTS ON LOGIQA DATASET. ACCURACIES

(%) ARE REPORTED

(RoBERTaLarge) and MERIt (RoBERTaLarge) on the test set. Fur-
thermore, using the training paradigm in LReasoner, “DAGNs +
LReasoner (RoBERTaLarge)” also show superiority over LRea-
soner (RoBERTaLarge) and MERIt (RoBERTaLarge). The results
demonstrate that this method is generally effective for logical
reasoning questions, regardless of training paradigms. The logic
graph constraint provides beneficial guidance to representation
learning and is superior to augmented plain texts.

3) MuTual Dataset. Compared Methods: The TF-IDF, Dual
LSTM [56], SMN [8], and DAM [9] conduct semantic text
matching between dialogue context and candidate responses by
using similarity of feature attention. According to the recall at
positions 1 and 2, these methods select the correct responses by
chance. The MRRs are also all lower than chance. This is not
surprising considering the high lexical overlap between the con-
text and the negative responses. For pre-trained LMs, GPT [23],
and GPT-2 [49] perform as poorly as the text-matching methods,
indicating that the generative models are inferior in reasoning.
BERT [24] and RoBERTa [25] show better performances, espe-
cially the RoBERTa-Large model. We also compare with Focal
Reasoner [51] and MDFN [57]. Focal Reasoner is a graph-based
model with entity-based nodes and coreference relations. MDFN
uses multiple attention masks to decouple the contextual repre-
sentations in utterance-aware and speaker-aware manners, then
fuse the representation with a gate. We follow MDFN to use
RoBERTaLarge and ELECTRALarge as the backbone PLMs for a
fair comparison.

Results: Table IV shows the compared results on the Mu-
Tual datasets. DAGNs surpass the compared methods, including
graph-based model and attention mask-based decoupling-fusion

network. The results demonstrate that our proposed method is
effective for less formal text such as multi-turn dialogue.

D. Results in Zero-Shot Scenarios

We conduct zero-shot transfer experiments among the three
datasets to see whether the constructed logic graph structure
helps the models with unseen logical reasoning questions. Con-
sidering the similarity between ReClor and LogiQA and the
distinguishment of MuTual, we first train the models on LogiQA,
then conduct direct testing on the ReClor development set and
test set in a zero-shot manner, and vice versa. We then train
the models on ReClor or LogiQA, respectively, then evaluate
the MuTual development set in a zero-shot way. For further
comparison, we conduct continue full training on the target
datasets. The results are demonstrated in Tables V and VI.

1) Zero-Shot Transfer Between ReClor and LogiQA: Com-
paring the results in the zero-shot setting and that in the super-
vised learning setting, it is surprising that the pre-trained LM and
our DAGNs both show generality to some extent. Transferring
from LogiQA to ReClor, RoBERTa-Large reaches 38.30% in the
test set, which is only 17.3 points behind that in the supervised
learning setting. DAGNs (LogiQA→ ReClor) achieve 41.90%
in the test set compared to 59.50% in the supervised learning
setting. Interestingly, the generality in the EASY subset is harder.
Both PLM and DAGNs accuracies are around 40% in the zero-
shot setting, but they achieve over 75% in the supervised learning
setting. But the transfer in the HARD subset does not lose much.
The performances in the zero-shot setting are over 35%, being
comparable to the supervised-learning counterparts. Moreover,
DAGNs (ReClor → LogiQA) achieve 41.47%/39.94% on the
development and test sets, comparable to 39.63%/42.09% of
the fine-tuning model. The experimental results indicate that the
generality of DAGNs is better than RoBERTa-Large, both trans-
ferring from LogiQA to ReClor and from ReClor to LogiQA.
It is indicated that the DAGNs improve the generality with the
logic graphs and logic representations.

Moreover, after fine-tuning the zero-shot models on the target
data, DAGNs-CT (ReClor→ LogiQA) reaches 43.78% on the
test set, DAGNs-CT (LogiQA → ReClor) reaches 55.40% on
the test set, and over 30% on the test-EASY set, while the
performance on test-HARD is only 0.35% inferior, which is still
comparable. It is indicated that the transfer does not harm the
performance given that the source and target data are different
in reasoning types and data distribution.

2) Zero-Shot Transfer to MuTual: The RoBERTa-Large
struggles with the transfer, especially from LogiQA. RoBERTa-
Large (LogiQA → MuTual/MuTualplus) only achieves results
around chance. This may be due to that the MuTual dataset shares
less familiarity with the ReClor or LogiQA dataset, and the Re-
Clor dataset is more challenging with more complex sentences
and logical structures, so learning from ReClor makes solving
the MuTual dataset easier. In contrast, the LogiQA provides less
beneficial structural information for solving MuTual.

DAGNs (ReClor → MuTual/MuTualplus) outperform
RoBERTa-Large (ReCLor → MuTual/MuTualplus). Similar
results are observed between DAGNs (LogiQA → MuTual/
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TABLE IV
EXPERIMENTAL RESULTS ON THE MUTUAL DEVELOPMENT SET. RECALLS (R@1, R@2) AND MEAN RECIPROCAL RANK (MRR) ARE REPORTED

TABLE V
ZERO-SHOT TRANSFER BETWEEN RECLOR AND LOGIQA COMPARED WITH

SUPERVISED LEARNING RESULTS. “ROBERTA-L” MEANS “ROBERTA-LARGE”.
“DAGNS-CT” INDICATES FULL TRAINING ON THE TARGET DATASET AFTER

ZERO-SHOT TRANSFER

TABLE VI
ZERO-SHOT TRANSFER FROM RECLOR TO MUTUAL AND LOGIQA TO MUTUAL

COMPARED WITH SUPERVISED LEARNING RESULTS. “DAGNS-CT” INDICATES

FULL TRAINING ON THE TARGET DATASET AFTER ZERO-SHOT TRANSFER

MuTualplus) and RoBERTa-Large (LogiQA →
MuTual/MuTualplus). The improvements of transferring to
MuTualplus are more significant than transferring to MuTual,
which relives the struggle of RoBERTa-Large. The observations
are coherent with that in the ReClor → LogiQA setting.
The results demonstrate that given MuTual/MuTualplus are
significantly different from ReClor/LogiQA in data distribution
and reasoning types, DAGNs show superiority in logical
reasoning transfer.

Further fine-tuning on the MuTual/MuTualplus results in
significant performance growth. R@1 of DAGNs-CT (Re-
Clor/LogiQA→MuTual) are 80.70% and 83.63%, of DAGNs-
CT (ReClor/LogiQA → MuTualplus) are 73.14% and 74.15%,
respectively, which are comparable to their fine-tuning counter-
parts. The result improvements further demonstrate that DAGNs
learn beneficial and general logic representations.

E. Ablation Study

We conduct an ablation study further to explore the benefits
of each part of our model. We take a close look at the model
components, the importance of the graph components, and the
effect of GNN layer stacks.

1) Importance of Graph Components: We further validate
each graph component. Since the logic graph structure is signif-
icant to logical reasoning, we carefully modify the components
of the logic graph and observe the performances. The results are
shown in Table VII.

We first vary the graph representation. The node embeddings
in DAGNs are initialized with the EDU embeddings merged
from the contextual token embeddings. We modify the pre-
trained and merged EDU features with randomly initialized
embeddings. The development set accuracy drops to 60.60%
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TABLE VII
ABLATION OF GRAPH REPRESENTATION AND STRUCTURE ON RECLOR

and the test set to 56.40%. It is worth noting that the accuracy in
the HARD subset falls from 44.64% to 40.71%. It is a significant
descent and demonstrates that the node features initialized from
contextual embeddings are beneficial to logic graph reasoning.

We then vary the graph structure by modifying the edges and
the nodes. We make two changes to the edges: (1) modifying
the edge linking and (2) modifying the edge type. For edge
linking, we first add variable edges within the context nodes and
the candidate nodes (homogeneous variable edges), respectively.
The performances drop to 63.60% on the development set, and
59.30% / 77.73% / 44.82% on the test / test-EASY / test-HARD
sets, respectively. The results indicate that the homogeneous
variable edges are redundant to the logic graphs. A possible
reason is that the discourse connective edges within the context
nodes and the candidate nodes are dense to some extent, so the
homogeneous variable edges do not provide further information
for the node feature update. Then, we ignore discourse relations
and connect every pair of nodes, turning the graph fully con-
nected. The resulting development accuracy drops to 63.00%,
and test accuracy drops to 56.10%. Moreover, we remove all
the edges from the logic graphs and randomly assign edges
among the nodes with a Bernoulli distribution. The development
set accuracy drops to 61.00%, and the test set the precision
to 55.90%. The performances indicate that the fully-connected
edge linking has unnecessary connections, while the random
edge linking misses some linkings with helpful information. It
reveals that in the logic graph we built, edges link EDUs in
reasonable manners.

For uncovering the contribution of edge types, instead of the
differentiation of explicit discourse relations and implicit ones,
all edges are regarded as a single type. With a single edge type,
the model reaches 62.80% on the development set and 57.70%
on the test set, which is 4.6% and 1.8% inferior to the entire
model. Therefore the two discourse-related edge types provide
some helpful information to the model.

The nodes in the logic graphs act as reasoning units and
are critical to logic representation learning. In substitution for
EDUs, we use clauses or sentences as graph nodes. To obtain
clause nodes, we remove “Explicit” connectives during dis-
course unit delimitation so that delimiters are only punctuation
marks. For sentence nodes, we further reduce the delimiter

TABLE VIII
ABLATION OF MODEL COMPONENTS (RECLOR DEV AND TEST ACCURACY

(%)). ER INDICATES THE EDGE-REASONING MECHANISM. GB INDICATES THE

GLOBAL GRAPH REPRESENTATION. NT INDICATES BINARY NODE TYPES. VE
INDICATES VARIABLE EDGES

library to solely period (“.”). The development and test accu-
racies drop to 63.40% and 56.60% with the modified graphs
with clause nodes. When replaced with coarser sentence nodes,
the performance drops to 60.40% and 57.30%. This indicates
that clause or sentence nodes carry less discourse information
and act poorly as logical reasoning units.

2) Model Components: To see the benefits of each com-
ponent in the representation learning, we carefully remove
them from the model, and the results on ReClor are shown
in Table VIII. We first remove the edge-reasoning mechanism,
and the results drop to 66.80%/59.80%/78.64%/45.00% on the
development/test/test-EASY/test-HARD sets, which indicates
the effectiveness of the edge-reasoning mechanism. Then, we
remove the global node representation, from both full DAGNs
and the DAGNs without edge-reasoning mechanism. Further
performance drops are observed. It is indicated that the global
graph representation catches some logical consistency between
the context and candidates. We then reduce the node types
to only one type. As a result, the logic graphs only have a
single node type. The dev accuracy drops dramatically from
67.40% to 63.40%. The test accuracy is slightly inferior, from
59.50% to 58.70%. Then, the variable edges are further removed
from the model. The test accuracy further declines to 58.20%.
Therefore, the logic graphs have reasonable structures for the
logical reasoning QA task.

We further remove the whole graph reasoning operation. As
a result, the hierarchical fusion is removed. The performance
drops dramatically. It is indicated that the lack of graph reasoning
leads to the absence of logic-aware features and degenerates the
performance. It demonstrates the necessity of logical structures.

3) Effect of GNN Layer Stacks: We change the number of
the stacked GNN layers in our model to see how the graph
reasoning steps affect the performances. We compare the per-
formances between the full DAGNs and the model without the
edge-reasoning mechanism. We run both the DAGNs with and
without the edge-reasoning mechanism in this setting. Moreover,
to compare the edge-reasoning mechanism with the non-local
graph neural networks [59], [60] for solving the over-smoothing
problem [61], [62] over the GNN layer stacks, we also compare
with the DAGNs with non-local GNNs [59] as a replacement of
the edge-reasoning mechanism. The results are demonstrated in
Fig. 5.
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Fig. 5. Performance comparison among DAGNs, DAGNs with non-local GNNs, and DAGNs without the edge-reasoning mechanism over multiple GNN layers.

Overall, the results show that the full DAGNs with the
edge-reasoning mechanism perform steadily over multiple GNN
layers, while the model without the edge-reasoning mechanism
shows fluctuation and deterioration when the GNN iteration
grows. Specifically, the DAGNs without edge-reasoning mech-
anism reach peak performances with around two-step aggrega-
tion, after which decreases due to the general over-smoothing
problem. In contrast, performance gains are observed in the full
DAGNs, especially on the test and test-HARD sets. This indi-
cates that shallow aggregation is insufficient for complex logical
reasoning tasks, while the learnable edge-reasoning mechanism
greatly relieves the over-smoothing problem in graph reason-
ing so that the model achieves deeper multi-hop reasoning
as required. One of the reasons is that the soft edge propa-
gation in the edge-reasoning mechanism reasons new edges,
which provides shortcuts for meaningful multi-hop relations and
then accelerates the effective node feature update. As a result,
the graph model takes fewer iterations to learn the multi-hop
relations.

Moreover, the DAGNs with non-local GNNs also show per-
formance stability over multiple GNN layers, but are generally
inferior to the DAGNs with the edge-reasoning mechanism.
The results indicate that the edge-reasoning mechanism is su-
perior in logical reasoning problems. The reason can be that
the “attention-guided sorting” in the non-local GNNs pulls the
distant nodes together according to a randomly initialized cali-
bration vector, which is less informative than the edge propaga-
tion in the edge-reasoning mechanism to understand the logical
relations.

F. Question Types

The ReClor dataset contains multiple question types corre-
sponding to diverse logical reasoning capabilities. We evaluate

Fig. 6. Performance comparison on question types in the ReClor test set. The
numbers in parenthesis mean the number of samples in each question type over
the test set scale.

models in each question type, and the results are demonstrated
in Fig. 6.

Generally speaking, DAGNs perform better on most types of
problems. In question types such as “Evaluation”, “Technique”,
and “Most Strongly Supported” that have high demands for
knowledge of logical structures, the performance boosts over
baseline models are significant. Therefore, the logic graphs
are helpful to identify logical roles, such as the conclusion.
Moreover, the questions of “Weakening” and “Implication” are
extremely challenging, and DAGNs also achieve improvements.
It is indicated that the constructed logic graphs provide weak-
ening relation and entailment relation information. Other types
of questions in which DAGNs perform well are “Strengthen”,
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Fig. 7. Visualization of DAGNs with the learned hybrid edges and node weights. In this case, the correct answer is option A. The DAGNs give the correct answer.

“Conclusion/Main Point”, “Explain or Resolve”, “Principle”
and so forth.

In three question types, “Match Flaws”, “Identify a Flaw”,
and “Necessary Assumption”, DAGNs perform inferior to the
RoBERTa-Large, especially in the challenging “Match Flaws”
questions. Therefore, although the logic graphs and representa-
tion learning are beneficial overall, they do not cover each log-
ical reasoning type. The “Match Flaws” questions also require
awareness of logical structures and paring the structures in the
passage and the options. Since the texts are logically flawed,
the logic graphs directly constructed from the texts are not
logically sound. Hence the learned logic representations are less
desirable.

G. Visualization

To further investigate the interpretability of the model, we vi-
sualize the generated hybrid edges and the learned node weights,
respectively.

We first visualize the hybrid edges generated by the edge-
reasoning mechanism, and two cases are shown in Figs. 7
and 8. In option A in Fig. 7, the edge-reasoning mechanism
generates a 3-hop hybrid edge between node (8) and node (10),
which bridges the question node and the key statement in the
candidate. Moreover, the edge-reasoning mechanism learns the
2-hop edges (node (7), node (8)) and (node (7), node (9)). As
node (7) is the conclusion, the edge-reasoning mechanism builds

the hybrid edges for node (7) to help understand the argument
and find the flaw. In contrast, in option C in this case, the
key connections are lacking. Similarly, in the case of Fig. 8,
in option B, the model connects node (0) and node (4), which
are the speaker and his/her opinion. The learned edges between
node (9) and node (10), and between node (9) and node (11),
builds connections between the speaker’s opinion, the question,
and the assumption in the candidate answer, which help find
the inconsistency between (9) and (11). In option C, the graph
has dense connections, especially between the context nodes
and candidate nodes. The generated hybrid edges are relatively
few. A reason is that the constructed edges are sufficient for
identifying the logical consistency.

Moreover, we visualize the graph node weights from multiple
model variants, and two cases are presented in Figs. 9 and 10
here. The node weights are theαi in Expression (7) demonstrated
in Section III-B3 in the manuscript. The five model variants
are (a) the full model DAGNs, (b) the DAGNs learned from
LogiQA and then perform on the ReClor in a zero-shot manner,
(c) the DAGNs without the edge-reasoning mechanism, (d) The
DAGNs with fully-connected edge linking, and (e) the DAGNs
with sentence nodes. In Fig. 9, we observe that models (a) and
(b) show better discrimination among the options as well as
connections between the passage and the option. Interestingly,
the zero-shot model (b) shows meaningful node attendance
as the full-training model. Model (c) shows that without the
learnable edge-reasoning mechanism, the model still being able
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Fig. 8. Visualization of DAGNs with the learned hybrid edges and node weights. In this case, the correct answer is option C. The DAGNs give the correct answer.

to attend to the significant node such as node (3) that indicates an
entailment, but the discrimination among the options is weaker.
Model (d) shows that the model gives almost even attention
to the sentences in the passage, nodes (2) and (5) have the
highest weights, showing that the model is more interested in
real entities and events, but it is less aware of the conclusion
or premise. Model (e) with sentence nodes still attends to the
conclusion sentence, but the coarse-grained delimitation does
not provide sufficient information for telling the correct answer.
Similar observations are found in Fig. 10. The model (d) with
fully-connected edge linking fails the question with vague dis-
crimination among the nodes.

V. RELATED WORKS

A. Textual Reasoning

Textual reasoning tasks such as reasoning QA [15], [63],
[64], [65], Fact-Checking [66], and natural language inference
(NLI) [67], [68] validate systems’ reasoning with multiple
schemes and granularity. Knowledge-based QA [63], [69], [70],
[71], [72], [73], [74] provides large-scale knowledge bases [75],
[76] for question answering. Multi-hop QA [14], [15] requires
models to reason over multiple documents and find supporting
facts for the question. Commonsense reasoning QA [64], [77],

[78] requires reasoning out the unstated world knowledge behind
it. Moreover, Fact-Checking [66] needs the models to retrieve
supporting evidence for the given claims, while NLI [67], [68]
requires the models to tell the inference relations between the
given sentence pairs.

The previous QA [14], [15], [64] and Fact-Checking tasks [66]
require models to retrieve supporting knowledge from a large
set of documents. The models focus on effective knowledge
retrieval and semantic matching. For example, HGN [12] con-
structs hierarchical graphs to aggregate clues from the different
granularity of evidence such as paragraph selection and sup-
porting fact extraction. GEAR [18] constructs fully-connected
evidence graphs with evidence-claim pairs as nodes for claim
verification. Such models do not uncover text structures or sim-
ulate the reasoning processes with a given document. In contrast,
solving logical reasoning questions requires the models to first
reconstruct the structural reasoning process behind the text, and
identify the logical components and relations, after which they
can answer the questions about conclusion, assumption, argu-
mentation strength, and logical fallacy. To achieve this, DAGNs
use discourse-aware graphs to identify the logical components
and use the variable edges to simulate the patterns. As a result,
the graph reasoning under the structural constraints focuses on
logic feature updates. Moreover, the edge-reasoning mechanism
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Fig. 9. Visualization of node weights learned from five models: DAGNs, DAGNs without the edge-reasoning mechanism, DAGNs with fully-connected edge
linking, DAGNs zero-shot transferred from LogiQA, and DAGNs with sentence nodes. In this case, the correct answer is option A. In the passage, the EDU indices
(*) in green are node delimitations from the full logic graph, and the indices in red are from the sentence nodes. The DAGNs, DAGNs w/o edge-reasoning give the
correct answer.
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Fig. 10. Visualization of node weights learned from five models: DAGNs, DAGNs without the edge-reasoning mechanism, DAGNs with fully-connected edge
linking, DAGNs zero-shot transferred from LogiQA, and DAGNs with sentence nodes. In this case, the correct answer is option A. In the passage, the EDU indices
(*) in green are node delimitations from the full logic graph, and the indices in red are from the sentence nodes. The DAGNs, DAGNs w/o edge-reasoning give the
correct answer.
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adapts the logical relations during training for more general logic
representations.

On the other hand, previous tasks focus on the awareness of
commonsense and world knowledge. For example, KagNet [79]
and MHGRN [80] encode subgraphs from ConceptNet [81]
and learn entity-based relational paths to answer commonsense
questions. K-Adapter [82] injects knowledge into pre-trained
models. For solving NLI [67], DRCN [20] aggregates the se-
mantics, while SemBERT [21] and SGNet [22] learn seman-
tics under different linguistic constraints. In contrast, logical
reasoning QA focus on inference patterns rather than knowl-
edge. For example in Fig. 1, the correct inference pattern is
the law of contraposition: “if A implies B, then not-B im-
plies not-A, and vice versa,” which is the key to the question.
The law is true regardless of the details in A and B. Such
knowledge-inference disentanglement provides generality to
unseen reasoning data. To this end, DAGNs is a pilot study
for modeling the inference structure rather than focusing on
knowledge.

Moreover, the recent Focal Reasoner [51] for logical reason-
ing QA also performs graph reasoning. However, the constructed
graphs extract entities and coreference relations following the
previous QA models, which shows inferiority in capturing the
logical relations between statements. Besides, LReasoner [52]
trains the PLMs with a contrastive learning framework, and
the negative samples are constructed by pre-defined logical
expressions. The negative samples are derived by logical expres-
sions. MERIt [53] performs domain-specific pre-training also
in a contrastive learning manner, where the augmented data is
constructed via graph meta-paths. However, the injected logic-
biased data is in natural language format, and the model they
use is plain PLM, which models the logical reasoning process
implicitly. It remains unclear how explicit logic formulation
facilitates QA systems and what kind of logical structure is
beneficial. Hence, in contrast, this paper focuses on logic-biased
deep models that explicitly model the logical reasoning process
and obtain the desired logic features. Our method also leverages
PLMs but does not use augmented data. Hence this study is
orthogonal to the previous [52].

B. Discourse Applications

Discourse information provides a high-level understanding
of texts and hence is beneficial for many natural language tasks,
for instance, text summarization [83], [84], [85], [86], neural
machine translation [87], and coherent text generation [88].
There are also discourse-based applications for reading compre-
hension. DISCERN [89] segments texts into EDUs and learns
interactive EDU features. Mihaylov and Frank [90] provide
additional discourse-based annotations and encode them with
discourse-aware self-attention models. However, such informa-
tion is not yet considered in logical reasoning. Unlike previous
works, this work builds discourse-aware logic graphs by first
using discourse relations as graph edges that connect EDUs,
then learning the discourse features via message passing with
graph neural networks.

In natural language processing, the most influential theo-
ries of discourse structure are the Rhetorical Structure The-
ory (RST) [41] and Lexicalized Tree-Adjoining Grammar for
Discourse (DLTAG) [91]. RST studies reconstructing tree-like
structures for texts. The D-LTAG focuses on detecting discourse
relations within local text units, and the units are disjoint sen-
tences or two clauses in a sentence. Inspired by the theories,
several treebanks are constructed, and the most influential ones
are RST-DT [92] and PDTB [92]. Models [42], [93], [94], [95],
[96] are trained on these treebanks to accomplish discourse
parsing. And discourse parsing is also applied for downstream
applications [89], [97], [98], [99].

However, current discourse parsers are primarily trained on
small datasets via supervised learning, where the representative
corpus is the 1 million-word Wall Street Journal (WSJ) Corpus.
As a result, it is challenging for the parsers to transfer to unseen
texts, especially in new topics or domains. Therefore, these
parsers are not applicable for logical structure parsing. In this
paper, we customize rules to perform discourse segmentation
and relation detection based on observations of the argument
passages.

VI. CONCLUSION

This article explores a structure-based solution to textual
logical reasoning that explicitly models the logical reasoning
process. The challenges include: (1) Uncovering the inference
structure from plain texts for effective structural constraints. (2)
Learning the inference processes rather than the knowledge for
effective logical reasoning.

To address the problems, we propose discourse-aware graph
networks (DAGNs) with logic graph construction and logic
representation learning. To construct beneficial logical struc-
tures, DAGNs get inspired by logic theories and convert plain
text into logic graphs via several factors. The in-line discourse
connectives indicate logical relations; hence are applied as text
delimiters and split passages into clause-like logical units. Then
the recurring topic-related terms are detected. The graph edges
are two folds: the discourse connectives indicate logical rela-
tions, and the variable connection simulates logical expression
derivation.

For learning the logic features, DAGNs take the constructed
graphs as input and perform soft edge selection and propagation
to produce multi-hop hybrid relations. It then updates the node
features via several steps of graph reasoning. The graph network
leverages contextual encoding and learns the logic representa-
tions, which are then fused for downstream prediction.

Extensive experiments are conducted on two logical reasoning
QA datasets and one multi-turn dialogue reasoning dataset.
The results demonstrate the overall superiority of DAGNs.
The constructed logic graph structure is reasonable, and the
edge-reasoning mechanism helps learn general logic repre-
sentations and improves model stability. The zero-shot trans-
fer results show that DAGNs perform remarkably well on
unseen reasoning questions, which indicates that the learned
logic representations are general in reasoning and beyond
knowledge.
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