
Integrating Large Language Models into Recommendation via
Mutual Augmentation and Adaptive Aggregation

Sichun Luo1, Yuxuan Yao1, Bowei He1, Yinya Huang1, Aojun Zhou2
Xinyi Zhang3, Yuanzhang Xiao4, Mingjie Zhan2, Linqi Song1†

1City University of Hong Kong
2The Chinese University of Hong Kong

3Capital University of Economics and Business
4University of Hawaii

sichun.luo@my.cityu.edu.hk,linqi.song@cityu.edu.hk

ABSTRACT
Conventional recommendation methods have achieved notable ad-
vancements by harnessing collaborative or sequential information
from user behavior. Recently, large language models (LLMs) have
gained prominence for their capabilities in understanding and rea-
soning over textual semantics, and have found utility in various
domains, including recommendation. Conventional recommenda-
tion methods and LLMs each have their own strengths and weak-
nesses. While conventional methods excel at mining collaborative
information and modeling sequential behavior, they struggle with
data sparsity and the long-tail problem. LLMs, on the other hand,
are proficient at utilizing rich textual contexts but face challenges
in mining collaborative or sequential information. Despite their
individual successes, there is a significant gap in leveraging their
combined potential to enhance recommendation performance.

In this paper, we introduce a general and model-agnostic frame-
work known as Large Language model with mutual augmenta-
tion and adaptive aggregation for Recommendation (Llama4Rec).
Llama4Rec synergistically integrates conventional and LLM-based
recommendation models. Llama4Rec proposes data augmentation
and prompt augmentation strategies tailored to enhance the con-
ventional model and the LLM respectively. An adaptive aggregation
module is adopted to combine the predictions of both kinds of mod-
els to refine the final recommendation results. Empirical studies
on three real-world datasets validate the superiority of Llama4Rec,
demonstrating its consistent and significant improvements in rec-
ommendation performance over baseline methods.

1 INTRODUCTION
Recommender systems have emerged as crucial solutions for miti-
gating the challenge of information overload [11, 12, 26, 27]. Rec-
ommender systems encompass a multitude of tasks, such as rat-
ing prediction [19, 36] and top-𝑘 recommendation [22, 28]. The
top-𝑘 recommendation, which encompasses collaborative filtering-
based direct recommendation [13, 14], sequential recommendation
[3, 18, 37], and more, has found wide applications in various areas.
However, recommender systems still suffer from the data sparsity
and long-tail problem. Data sparsity arises from sparse user-item
interactions, making the task of accurately capturing user prefer-
ences more challenging. The long-tail problem further intensifies
data sparsity issue, as a substantial number of less popular items
(i.e., long-tail items) are infrequently interacted with, leading to

†Coresponding Author.

inadequate data for effective model training and compromised rec-
ommendation quality.

In recent years, Large Language Models (LLMs) have emerged,
exhibiting exceptional capabilities in language understanding, text
generation, and complex reasoning tasks [30, 39–41, 56]. Recent
studies have started exploring their applicability in recommender
systems [2, 24, 51]. For example, Liu et al. employed ChatGPT
with in-context learning (ICL) for various recommendation tasks
[24]. Further progress has been achieved by adopting the instruc-
tion tuning technique [25, 31] to align general-purpose LLMs with
recommendation tasks for improved performance [2, 51]. For in-
stance, TALLRec [2] reformulates the recommendation problem as
a binary classification task and introduces an effective instruction
fine-tuning framework for adapting the LLaMA model [40]. How-
ever, these LLM-based recommendation methods may not perform
optimally as they do not harness the collaborative or sequential
information captured by conventional recommendation models.

Conventional recommendation models and LLM-based recom-
mendation methods each have their respective strengths and weak-
nesses. Conventional methods excel in mining collaborative infor-
mation and modeling sequential behaviors, while LLMs are profi-
cient in leveraging rich textual contexts. As such, the integration of
LLMs into recommender systems presents a significant opportunity
to amalgamate the advantages of both methodologies while cir-
cumventing their respective shortcomings. There have been initial
attempts to harness the strengths of both conventional and LLM-
based recommenders [8, 45, 54, 55]. Some efforts have sought to
integrate collaborative/sequential information by enabling LLMs
to comprehend user/item ID information [8, 54, 55]. For instance, a
concurrent study by Zhang et al. encoded the semantic embedding
into the prompt [54] and send it to LLM. On the other hand, some
research works have aimed to augment conventional models using
LLMs via data or knowledge augmentation [45, 47]. LLMRec [45]
enhances recommender systems by deploying LLMs to augment
the interaction graph, thereby addressing the challenges of data
sparsity and low-quality side information.

However, existing methods have several limitations. Firstly, cur-
rent methods lack generalizability. The strategy of integrating ID
information proves challenging to generalize across different do-
mains and necessitates additional training. The current data aug-
mentation method is not universally applicable, as it only addresses
a limited number of recommendation scenarios. Secondly, current
research primarily focuses on the integration at the data-level (e.g.,
data augmentation) or model-level (e.g., make LLM understand ID

ar
X

iv
:2

40
1.

13
87

0v
1

 [
cs

.I
R

]
 2

5
Ja

n
20

24

SIGIR’24, July 14-18, 2024, Washington D.C., USA Sichun Luo et al.

semantics), leaving the result-level integration largely unexplored.
Lastly, there is an absence of a comprehensive framework that
combines and integrates these methods into a single construct. In
light of these limitations, our objective is to explore the integration
of conventional recommendation models and LLM-based recom-
mendation methods in depth to address the above limitations and
enhance recommendation performance.

In this paper, we introduce a general framework known as Large
language model with mutual augmentation and adaptive aggrega-
tion for Recommendation, referred to as Llama4Rec, for brevity.
The core idea of Llama4Rec is to allow conventional recommenda-
tion models and LLM-based recommendation models to mutually
augment each other, followed by an adaptive aggregation of the
augmented models to yield more optimized results. Specifically,
Llama4Rec performs data augmentation for conventional recom-
mendation models by leveraging instruction-tuned LLM to alleviate
the data sparsity and long-tail problem. The data augmentation is
tailored with different strategies depending on the recommenda-
tion scenarios. Furthermore, we use conventional recommendation
models to perform prompt augmentation for LLMs. The prompt
augmentation includes enriching collaborative information from
similar users and providing prior knowledge from the conventional
recommendation model within the prompt. We also propose an
adaptive aggregation module that merges the predictions of the
LLM and conventional models in an adaptive manner. This module
is designed as a simple yet effective way to combine the strengths of
both models and refine the final recommendation results. We con-
duct empirical studies on three real-world datasets, encompassing
three different recommendation tasks, to validate the superiority
of our proposed method. The results consistently demonstrate its
superior performance over baseline methods, highlighting notable
improvements in recommendation performance.

In a nutshell, the contributions of this work are threefold.
• We introduce Llama4Rec, a general and model-agnostic frame-
work to integrate LLM into conventional recommendation mod-
els. Llama4Rec performs the data augmentation for conventional
models to alleviate the data sparsity problem and improve model
performance. The prompt augmentation is applied to LLM for
leveraging the information captured by the conventional models.

• Llama4Rec employs an adaptive aggregation approach to com-
bine the prediction from the conventional recommendationmodel
and LLM for improved recommendation performance via lever-
aging and merging the information by both kinds of models.

• To validate the effectiveness of Llama4Rec, we conduct extensive
experiments on three real-world datasets across three diverse
recommendation tasks. The empirical results demonstrate that
Llama4Rec outperforms existing baselines, exhibiting notable
improvements across multiple performance metrics.

2 RELATEDWORK
2.1 Conventional Recommendation Methods
Conventional recommendation methods serve as the cornerstone
for the contemporary landscape of recommender systems [53]. Rep-
resentative recommendation tasks include rating prediction, col-
laborative filtering-based direct recommendation, and sequential
recommendation, where the latter two are usually formulated as

top-𝑘 recommendation problems. Specifically, one of the seminal
techniques is the use of matrix factorization for rating prediction,
popularized by methods such as Singular Value Decomposition
(SVD) [20]. Collaborative filtering (CF) is another commonly used
technique for the recommender systems [1]. Recent advancements
have evolved CF techniques into more complex neural network ar-
chitectures and graph-based models [14, 44] to enhance the model
performance. Sequential recommendation models incorporate tem-
poral patterns into the recommendation pipeline. Techniques such
as recurrent neural networks have been adapted for this purpose
[15]. Recent research focuses on applying attention mechanisms
to further refine these models, leading to a noteworthy boost in
performance [18, 37].

Although conventional recommendation techniques are well-
suited for capturing latent information associated with users and
items, they often require a substantial amount of user-item inter-
actions to provide accurate recommendations, which limits their
effectiveness in data sparse and long-tail scenarios [32].

2.2 Large Language Model for Recommendation
LLMs have brought a paradigm shift in numerous areas of machine
learning, including recommendation methods [7]. One of the most
compelling advantages of LLM-based recommendation methods is
their capacity for contextual understanding and in context learning
[5]. Inspired by this, reference [24] utilized ChatGPT across diverse
recommendation tasks and found it to be effective in specific con-
texts, underpinned by robust experiments and human evaluations.
Similarly, Wang et al. [42] introduced a novel zero-shot technique
for next-item recommendations, further substantiating the utility
of LLMs in this arena. However, it is noteworthy that these meth-
ods do not consistently demonstrate a marked improvement over
conventional recommendation algorithms, which is largely attrib-
utable to the inherent misalignment between the general-purpose
capabilities of LLMs and the specialized requirements of the recom-
mendation task. To address this issue, recent studies further attempt
to instruct tuning the specific LLM to align with human preference
[2, 51]. Typically, these approaches involve creating an instruc-
tion tuning dataset in line with recommendation tasks, which is
then used to tune the LLM for recommendation. Such methodolo-
gies have demonstrated improved performance in generating more
aligned and accurate recommendations.

Nevertheless, while LLMs excel at capturing intricate textual pat-
terns, they may encounter challenges in comprehensively encoding
user and item collaborative or sequential information. Though some
concurrent studies [54, 55] aim to address this gap, they often lack
in terms of generalizability and comprehensibility. In response to
this challenge, we propose a novel framework designed to mitigate
this issue.

3 PRELIMINARY
We consider a recommender system with a set of users, denoted
U = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, and a set of items, denotedI = {𝑖1, 𝑖2, . . . , 𝑖𝑚}.
The rating prediction task aims to estimate the unknown values of
𝑟𝑢𝑖 in the user-item interaction matrix 𝑅 ∈ R𝑛×𝑚 , where each entry
𝑟𝑢𝑖 is the rating assigned by user 𝑢 to item 𝑖 . Different from rating
prediction, top-𝑘 recommendation focuses on identifying a subset

Integrating Large Language Models into Recommendation via Mutual Augmentation and Adaptive Aggregation SIGIR’24, July 14-18, 2024, Washington D.C., USA

Figure 1: (i) The overall framework architecture of the proposed Llama4Rec consists of two main components: mutual
augmentation and adaptive aggregation. The mutual augmentation includes data augmentation and prompt augmentation. (ii)
Illustration of the data augmentation process encompasses three diverse recommendation scenarios. (iii) The pipeline of the
adaptive aggregation module, which merges the predictions from the conventional recommendation model and the LLM.

of items S𝑢 ⊂ I for each user 𝑢. The subset is chosen to maximize
a user-specific utility 𝑈 (𝑢,S) with the constraint |S| = 𝑘 , which
can be formally expressed as:

S𝑢 = argmaxS⊂I, |S |=𝑘𝑈 (𝑢,S). (1)

In the context of LLM-based recommendation methods, let 𝐿𝐿𝑀
represent the original LLM. These kinds of methods first utilize
prompt to interpret the recommendation task into natural language.
The LLM-based recommendation for user𝑢 with in-context learning
is denoted by 𝑟𝑢 = 𝐿𝐿𝑀 (P𝑢) where P𝑢 is the recommendation
prompt for user 𝑢. The recommendation prompt could either ask
LLM to predict a rating towards a target item, or rank candidate
items derived by retrieval models in top-k recommendation. To
instruction fine-tune LLM, a dedicated dataset D𝑖𝑛𝑠 consisting of
various instructions is utilized. The resulting instruction-tuned LLM
is denoted as 𝐿𝐿𝑀′. Therefore, the recommendation process in the
fine-tuned model can be succinctly represented as 𝑟𝑢 = 𝐿𝐿𝑀′ (P𝑢).

4 METHODOLOGY
4.1 Overview
Figure 1 depicts the architecture of Llama4Rec, which consists of
three components: data augmentation, prompt augmentation, and
adaptive aggregation. More specifically, Llama4Rec leverages an
instruction-tuned LLM to enhance conventional recommendation
systems through data augmentation. The specific data augmenta-
tion strategies for different recommendation situations are detailed
in Section 4.2. In addition, we employ conventional recommenda-
tion models to augment the LLM via prompt augmentation, with
details in Section 4.3. To further refine the predictions of the con-
ventional model and the LLM, we propose a simple yet effective
adaptive aggregation module in Section 4.4. Lastly, we describe the
training strategy for LLM in Section 4.5.

4.2 Data Augmentation for Conventional
Recommendation Model

We design ad-hoc data augmentation strategies for different recom-
mendation scenarios to mitigate prevalent issues of data sparsity
and the long-tail problem. This design is motivated by the fact that
data distribution and tasks significantly vary across different rec-
ommendation scenarios. In the context of direct recommendation,
we capitalize on the power of the instruction-tuned LLM to predict
items that a user may like or dislike. We form pairs of these items
to calculate the Bayesian Personalized Ranking (BPR) [34] loss.
For sequential recommendation, we harness the capabilities of the
instruction-tuned LLM to predict items that are highly preferred
by the user. These predicted items are then randomly inserted into
the sequence of items the user has interacted with. For rating pre-
diction, we utilize the LLM to extract valuable side information
(i.e., missing attributes), which is then seamlessly integrated as
additional features within the training data.

4.2.1 Data Augmentation for Direct Recommendation. For direct
recommendation, the Bayesian Personalized Ranking (BPR) loss is
commonly used to optimize the model [34]. The objective of BPR is
to maximize the score difference between correctly recommended
items and incorrectly recommended items, thereby improving the
accuracy of recommendations. The BPR loss is defined as:

L𝐵𝑃𝑅 = −
∑︁

(𝑢,𝑖, 𝑗) ∈D
log𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗), (2)

where (𝑢, 𝑖, 𝑗) refers to a triple of user-item pairs, and the user 𝑢
has interacted with item 𝑖 (positive item) and item 𝑗 (negative item).
D represents the set of such user-item pairs in the training data.
𝑦𝑢𝑖 denotes the predicted score or preference of user 𝑢 for item 𝑖 .

Inspired by this, we propose a data augmentation strategy where
we randomly select pairs of items for a user 𝑢 and prompt the LLM

SIGIR’24, July 14-18, 2024, Washington D.C., USA Sichun Luo et al.

to rank each pair based on the user’s likely preference. The ranking
prediction based on LLM is then combined with the original data
and used to train a direct recommendation model. Formally, let
(𝑖 𝑗 , 𝑖𝑘) denote a pair of items for a user 𝑢. The LLM is prompted
to rank these items, denoted as 𝑖+, 𝑖− = LLM(P1), where P1 is the
corresponding prompt and 𝑖+ is the item preferred over 𝑖− . The
training data D is updated as D′ = D ∪ (𝑢, 𝑖+, 𝑖−). The BPR loss is
then updated as:

L′
𝐵𝑃𝑅 = −

∑︁
(𝑢,𝑖, 𝑗) ∈D′

log𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗). (3)

This data augmentation strategy leverages the power of the
instruction tuned LLM to enhance the performance of the direct
recommendation model.

4.2.2 Data Augmentation for Sequential Recommendation. For se-
quential recommendation, the data augmentation strategy involves
enriching the sequence of interacted items with additional items
predicted by the LLM. Let’s consider a user 𝑢 with a corresponding
sequence of interacted items {𝑖1, ..., 𝑖𝑙 }. We randomly sample a list
of un-interacted items {𝑖𝑢1, ..., 𝑖𝑢𝑘 }, and adopt the prompt P2 to ask
the LLM to predict the item most likely to be preferred by the user,
denoted as 𝑖𝑝 = LLM(P2). This predicted item 𝑖𝑝 is then randomly
inserted into the user’s sequence, resulting in an augmented se-
quence {𝑖1, ..., 𝑖𝑝 , ..., 𝑖𝑙 }. This augmented data is then used to train
a more powerful sequential recommendation model.

By including additional items predicted by the LLM, we can
enrich the sequence of items for each user, providing a more com-
prehensive representation of the user’s preferences. This, in turn,
can enhance the performance of the conventional recommendation
model, leading to more accurate recommendations.

4.2.3 Data Augmentation for Rating Prediction. In rating prediction
tasks, we introduce the use of in-context learning (ICL) in LLMs
to provide side information. This is primarily due to the fact that
recommendation datasets may contain incomplete information.
For instance, the popular Movielens dataset [10] lacks information
about the director of the movies, which can hinder the performance
of a conventional rating prediction model. To mitigate this issue, we
leverage the extensive world knowledge contained in an LLM. We
prompt the LLM to provide side information, acting as additional
attributes for users/items.

Formally, we denote the rating prediction model as M𝑟 , and the
attribute set asA = {𝑎1, 𝑎2, ..., 𝑎𝑛}, where 𝑎𝑖 ∈ A denotes a distinct
attribute. The model predicts the rating as Pred = M𝑟 (A). We then
prompt the LLM to provide additional attributes, where the prompt
P3 contains some corresponding examples followed by detailed in-
structions. The process is denoted as {𝑎𝑑1, 𝑎𝑑2, ...} = LLM(P3). The
augmented attribute set is then formed as A′ = A ∪ {𝑎𝑑1, 𝑎𝑑2, ...}.
The model then predicts the rating using the augmented attribute
set, denoted as Pred′ = M𝑟 (A′). This approach allows us to lever-
age the LLM’s world knowledge to enhance the performance of the
rating prediction model.

Top-k Recommendation Prompt Example:
Instruction: Rank the candidate movies based on user histori-
cal interactions and make the top k recommendations.
Interaction History: Beyond Rangoon (1995); Alien (1979);
Hollow Reed (1996); Primary Colors (1998); ...; Birds, The (1963)
Candidate Items: Last Dance (1996); Remains of the Day, The
(1993); Assassins (1995); ...; Fatal Instinct (1993)
Similar User Interaction History: L.A. Confidential (1997);
Apt Pupil (1998); Kolya (1996); ...; Star Wars (1977)
Conventional Model Prediction: Remains of the Day, The
(1993); Addiction, The (1995); ...; Fugitive, The (1993)
Output: Fugitive, The (1993); Angel Baby (1995); ...; Remains
of the Day, The (1993)

Rating Prediction Prompt Example:
Instruction: Predict the rating of a target movie based on the
user’s historical movie ratings.
Rating History: Independence Day (1996): 3; Grosse Fatigue
(1994): 3; Face/Off (1997): 4; ...; Shall We Dance? (1996): 3
Candidate Item: Pink Floyd - The Wall (1982)
Similar User Rating History: L.A. Confidential (1997): 3; Apt
Pupil (1998): 4; ...; English Patient, The (1996): 3
Conventional Model Prediction: 3.2
Output: 3

Figure 2: Examples of instructions for top-k recommendation
and rating prediction. The prompt augmentation component
is underlined. To improve readability and facilitate better
experimental evaluation, we introduce certain modifications
to the original instructions employed in our experiments.

4.3 Prompt Augmentation for Large Language
Model

Previous works [2, 51] instruction tuning LLM for recommenda-
tion in a standard manner. However, these methods can be sub-
optimal due to the challenges of distinguishing users based solely on
text-based prompt descriptions. Although some concurrent studies
[54, 55] incorporate unique identifiers to differentiate users, these
approaches require complex semantic understanding of IDs and
additional training, limiting their generalizability.

In this section, we introduce two text-based prompt augmenta-
tion strategies for LLM-based recommendations, i.e., we incorporate
additional information within the prompt to enhance the model
performance. First, we propose prompt augmentation with similar
users, identifying users with analogous preferences to enrich the
prompt, thereby enhancing the LLM’s ability to leverage collabo-
rative information and generate personalized recommendations.
Second, we propose prompt augmentation with conventional model
prediction, providing prior knowledge to guide the LLM toward rec-
ommendations that align with user preferences. Collectively, these
strategies harness the strengths of both LLMs and conventional
recommendation models, ensuring generalizability across a wide
range of recommendation scenarios. The illustration of prompt
augmentation is underlined in Figure 2.

Integrating Large Language Models into Recommendation via Mutual Augmentation and Adaptive Aggregation SIGIR’24, July 14-18, 2024, Washington D.C., USA

4.3.1 Prompt Augmentation with Collaborative Information from
Similar User. To incorporate collaborative information within the
prompt and facilitate LLM reasoning, we introduce a prompt aug-
mentation strategy with similar user. Initially, we utilize a pre-
trained conventional recommendation model to acquire embed-
dings for each user. These embeddings represent users in a la-
tent space, which encapsulates their preferences and behaviors.
Specifically, for a user 𝑢, in conjunction with a conventional rec-
ommendation model M𝑐 , we use M𝑐 to obtain embeddings for
each user, denoted as {𝑒1, ..., 𝑒𝑛}. These embeddings encapsulate
the preferences and behaviors of the users, serving as a compact
representation of the users in a latent space. We then calculate the
similarity between these embeddings in the latent space. Various
measurements, such as cosine similarity, Jaccard similarity, and
Euclidean distance, could be employed in this context. In this pa-
per, we calculate the cosine similarity to measure how closely two
vectors align, denoted as:

𝑠𝑖𝑚(𝑢, 𝑣) = 𝑒𝑢 · 𝑒𝑣
| |𝑒𝑢 | | · | |𝑒𝑣 | |

, (4)

where 𝑒𝑢 and 𝑒𝑣 are the embeddings of user 𝑢 and 𝑣 , respectively,
and 𝑢, 𝑣 ∈ U. The | | · | | denotes the Euclidean norm and · denotes
the dot product. We identify the pair of users (𝑢, 𝑣) that have the
highest similarity, indicating that they are the most similar in terms
of their preferences and behaviors. We then use the items interacted
with by the most similar user to enrich the prompt for the target
user. This strategy leverages the collaborative information gleaned
from similar users to generate more relevant and accurate prompts,
thereby enhancing the recommendation performance of the LLM.

4.3.2 Prompt Augmentation with Prior Knowledge from Conven-
tional Recommendation Model Prediction. To enable the LLM to
leverage information captured by conventional models, we pro-
pose a prompt augmentation method that incorporates informa-
tion from conventional recommendation models. More specifically,
the augmented prompt is formed by concatenating the original
prompt with the prediction from the conventional recommendation
model in natural language form. It’s important to note that the
prediction from the conventional model varies depending on the
recommendation scenarios and base models. Through augmenting
prompts with predictions from conventional recommendation mod-
els, our method integrates collaborative or sequential information
captured by these models, thereby enhancing the LLM’s contextual
understanding and reasoning capabilities and resulting in better
recommendation performance.

Notably, unlike ID-based methods such as [54, 55], our approach
relies entirely on text, enabling easy adaptation to new situations.
Also, the prompt augmentation could be used as a plug-and-play
component for recommendation with closed source LLM, such as
the GPT-4 model [30].

4.4 Adaptive Aggregation
We endeavor to aggregate the outputs of LLM and conventional
recommendation models at the result level for improved perfor-
mance, considering the disparate model structures. However, indis-
criminate aggregation of model predictions can potentially lead to
suboptimal results. Conventional recommendation models, known
for their susceptibility to the long tail issue, often struggle when

dealing with the tail segment. In contrast, LLMs, by leveraging
contextual information, are able to maintain a relatively uniform
performance across all segments. Motivated by these observations,
we first define the long-tail coefficient and subsequently adaptively
aggregate the predictions from both model types.

We first define the long-tail coefficient ℓ𝑢 for user 𝑢 to quantify
where the user is located in the tail of the distribution. The long-tail
coefficient is defined as follows:

ℓ𝑢 = log (𝑁 (𝑢) + 1) , (5)

where 𝑁 (𝑢) is the number of interaction for user 𝑢. A lower long-
tail coefficient value indicates that the user has fewer feedback.

While the overarching architecture remains consistent, the im-
plementation details are different for the two tasks considered,
namely rating prediction and top-𝑘 recommendation.

4.4.1 Adaptive Aggregation for Rating Prediction. For the rating
prediction task, we employ an instruction-tuned LLM to predict
user-item utility scores directly. This approach incorporates the un-
derstanding of complex semantics and context by the LLM, which
might be overlooked by traditional models. Similarly, conventional
recommendation methods leverage collaborative information and
user/item features for predicting the user rating. Specifically, the
utility weight for user 𝑢, denoted as 𝑈𝑢 , is directly set as its user
rating. Subsequently, the LLM is engaged to predict the rating, sym-
bolized as 𝑈𝐿𝐿𝑀 . There are various methods to derive a final result
based on the utility scores, such as training a neural network to
process the utility scores from LLM and conventional models, yield-
ing a final output via learning the complex reflection. However, for
the sake of simplicity in this paper, we adopt a simple yet effective
linear interpolation approach. The final utility score for a user 𝑢
amalgamates the values from both models, represented as:

𝑈𝑢 = 𝛼𝑢𝑈𝐿𝐿𝑀 + (1 − 𝛼𝑢)𝑈𝑅𝑒𝑐 , (6)

where 𝛼𝑢 is the adaptive parameter to control the weight for each
model’s utility value for user 𝑢. We define the 𝛼𝑢 as:

𝛼𝑢 = max
(
ℓ𝑚𝑎𝑥 − ℓ𝑢

ℓ𝑚𝑎𝑥 − ℓ𝑚𝑖𝑛
, 𝛼2

)
· 𝛼1, (7)

where ℓ𝑚𝑎𝑥 and ℓ𝑚𝑖𝑛 are the maximum and minimum long-tail
coefficients of the users, respectively, 𝛼1 is a hyper-parameter that
controls the weight, and 𝛼2 < 1 is a cut-off weight. From Equation
(7), we can observe that for user 𝑢, the further they are positioned
in the long tail (i.e., the fewer items they have interacted with),
the lower is the value of ℓ𝑢 and the higher is the value of 𝛼𝑢 . As a
result, in Equation (6), the weight of the utility score from the LLM
model becomes more pronounced. This aligns with the motivation
we previously discussed.

4.4.2 Adaptive Aggregation for Top-𝑘 Recommendation. For the top-
𝑘 recommendation task, the LLM is employed to re-rank the item
list generated by a conventional recommendation model. Specif-
ically, from conventional recommendation methods, we curate a
top-ranked list comprising 𝑘′ items, denoted as {𝑖1, ..., 𝑖𝑘 ′ }. Each
item in this list is assigned a utility weight,𝑈 𝑖

𝑅𝑒𝑐
= −𝑠 ·C, where C is

a constant and 𝑠 represents the position of item 𝑖 , i.e., 𝑠 ∈ {1, ..., 𝑘′}.
A higher utility weight indicates a stronger inclination of the user’s

SIGIR’24, July 14-18, 2024, Washington D.C., USA Sichun Luo et al.

preference. For listwise comparison conducted by the LLM, the pro-
cess begins by using the LLM to directly output the predicted order
of these candidate items. Then we assign utility scores for items at
each position, denoted as𝑈1,𝑈2, ...,𝑈𝑘 ′ , where𝑈1 ≥ 𝑈2 ≥ ... ≥ 𝑈𝑘 ′ .
The final utility score for an item amalgamates the values from
both the original rating and the LLM prediction, similar to the
Equation (6).

4.5 Training Strategy for LLM
4.5.1 Instruction Tuning Dataset Construction. This section details
the creation of an instruction-tuning dataset that encompasses two
types of recommendation tasks catering to top-𝑘 recommendation
and rating prediction scenarios. A depiction of these two tasks,
specifically referred to as listwise ranking and rating prediction, can
be found in Figure 2. It is noteworthy that we also employ the
LLM to execute pointwise ranking within top-𝑘 recommendation
scenarios, i.e., utilizing LLM to predict ratings for each item within
the top-k recommendations and sorting the predicted ratings to
derive the final result.

4.5.2 Optimization via Instruction Tuning. In this work, we per-
form full parameter instruction tuning to optimize LLMs using
generated instruction data. Due to our need for customization, we
chose LLaMA-2 [40], an open-source, high-performing LLM, which
permits task-specific fine-tuning. During supervised fine-tuning,
we apply a standard cross-entropy loss following Alpaca [38]. The
training set D𝑖𝑛𝑠 consists of instruction input-output pairs (𝑥,𝑦),
which have been represented in natural language. The objective is
to fine-tune the pre-trained LLM by minimizing the cross-entropy
loss, formalized as:

min
Θ

∑︁
(𝑥,𝑦) ∈D𝑖𝑛𝑠

|𝑦 |∑︁
𝑡=1

− log 𝑃Θ
(
𝑦𝑡 | 𝑥,𝑦[1:𝑡−1]

)
, (8)

where Θ are the original parameters for LLM, 𝑃Θ is the conditional
probability, |𝑦 | is the number of tokens in 𝑦, 𝑦𝑡 is the 𝑡-th token
in the target output 𝑦, and 𝑦[1:𝑡−1] represents tokens preceding
𝑦𝑡 in 𝑦. By minimizing this loss function, the model fine-tunes its
parameters Θ to adapt to the specifics of the new instruction tuning
dataset D𝑖𝑛𝑠 , while leveraging the general language understanding
and reasoning that has been acquired during pre-training [52]. In
this manner, LLM can capture the user’s preferences for items
expressed in natural language, facilitating diverse recommendation
tasks, including top-k recommendation and rating prediction.

5 EXPERIMENT
In this section, we present a thorough empirical evaluation to vali-
date the effectiveness of our proposed framework. Specifically, our
objective is to investigate whether the incorporation of our pro-
posed Llama4Rec could enhance existing recommendation models.
The overarching goal is to answer the following research questions:
• RQ1: Does our proposed Llama4Rec framework enhance the
performance of existing recommendation models?

• RQ2: How do the various modules in Llama4Rec affect the rec-
ommendation performance?

• RQ3: How do different hyper-parameters impact the overall
performance of the framework?

Table 1: Dataset Description.

ML-100K ML-1M BookCrossing

of User 943 6,040 6,851
of Item 1,682 3,706 9,085
of Rating 100,000 1,000,209 115,219
Density 0.063046 0.044683 0.001851

User Features Gender, ZipCode, Gender, ZipCode, Location, AgeOccupation, Age Occupation, Age

Item Features Title, Genres Title, Genres Title, Author,
Year Year, Publisher

Augmented Movie Director, Movie Director, Book Genres,
Features Movie Star Movie Star Page Length

5.1 Experiment Setup
5.1.1 Dataset. Following [2], we rigorously evaluate the perfor-
mance of our proposed framework by employing three heteroge-
neous, real-world datasets.MovieLens1 [10] serve as benchmark
datasets in the realm of movie recommendation methods. We em-
ploy two variants of the dataset: MovieLens-100K (ML-100K) and
MovieLens-1M (ML-1M). The former consists of approximately
100,000 user-item ratings, while the latter scales up to roughly
1,000,000 ratings. BookCrossing2 [57] includes user-generated
book ratings on a scale of 1 to 10, alongside metadata such as ‘Book-
Author’ and ‘Book-Title’. We employ LLM to augment the ‘director’
and ‘star’ features for ML-100K and ML-1M datasets, and augment
the ‘genre’ and ‘page length’ features for the BookCrossing dataset.
To ensure the data quality, we adopt the 5-core setting, i.e., we filter
unpopular users and items with fewer than five interactions for the
BookCrossing dataset. The key characteristics of these datasets are
delineated in Table 1.

5.1.2 Evaluation Metrics. Aligning with [13, 37], for the top-𝑘 rec-
ommendation task, we turn to two well-established metrics: Hit
Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG),
denoted by H and N, respectively. In our experiments, 𝑘 is config-
ured to be either 3 or 5 for a comprehensive evaluation, similar to
the experiment setting in [51]. In accordance with [6], we employ
Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE)
as evaluation metrics to ascertain the performance of the rating
prediction task.

5.1.3 Data Preprocessing. Following the methodology of prior
works [29, 51], we adopt a leave-one-out evaluation strategy. More
specifically, within each user’s interaction sequence, we choose the
most recent item as the test instance. The item immediately preced-
ing this serves as the validation instance, while all remaining inter-
actions are used to constitute the training set. Moreover, regarding
the instruction-tuning dataset construction, we randomly sampled
5K instructions for each recommendation task on the ML-100K,
ML-1M, and BookCrossing datasets, respectively. We eliminated
instructions that were repetitive or of low quality (identified by

1https://grouplens.org/datasets/movielens/
2Due to the absence of timestamp data, we synthesize historical interactions through
random sampling.

https://grouplens.org/datasets/movielens/

Integrating Large Language Models into Recommendation via Mutual Augmentation and Adaptive Aggregation SIGIR’24, July 14-18, 2024, Washington D.C., USA

Table 2: Performance achieved by different direct recommendation methods.

Backbone Method ML-100K ML-1M BookCrossing

H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑

MF

Base 0.0455 0.0325 0.0690 0.0420 0.0255 0.0187 0.0403 0.0248 0.0294 0.0227 0.0394 0.0269
IFT 0.0546 0.0388 0.0790 0.0488 0.0242 0.0175 0.0410 0.0244 0.0247 0.0177 0.0377 0.0230

Llama4Rec 0.0645* 0.0474* 0.0919* 0.0588* 0.0281* 0.0203* 0.0433* 0.0265* 0.0365* 0.0284* 0.0462* 0.0324*
Impro. 18.13% 22.16% 16.33% 20.49% 10.20% 8.56% 5.61% 6.85% 24.15% 25.55% 17.26% 20.45%

LightGCN

Base 0.0492 0.0343 0.0744 0.0447 0.0283 0.0203 0.0432 0.0264 0.0358 0.0272 0.0480 0.0322
IFT 0.0537 0.0381 0.0846 0.0507 0.0268 0.0193 0.0441 0.0263 0.0287 0.0202 0.0448 0.0268

Llama4Rec 0.0647* 0.0476* 0.0967* 0.0608* 0.0304* 0.0222* 0.0461* 0.0286* 0.0434* 0.0338* 0.057* 0.0394*
Impro. 20.48% 24.93% 14.30% 19.92% 7.42% 9.36% 4.54% 8.33% 21.23% 24.26% 18.75% 22.36%

MixGCF

Base 0.0526 0.0401 0.0757 0.0496 0.0159 0.0115 0.0238 0.0147 0.0426 0.0330 0.0556 0.0384
IFT 0.0617 0.0452 0.0906 0.0570 0.0162 0.0114 0.0259 0.0154 0.0337 0.0243 0.0506 0.0312

Llama4Rec 0.0690* 0.0515* 0.0949* 0.0621* 0.0174* 0.0128* 0.0259 0.0162* 0.0495* 0.0384* 0.0635* 0.0441*
Impro. 11.83% 13.94% 4.75% 8.95% 7.41% 11.30% 0.00% 5.19% 16.20% 16.36% 14.21% 14.84%

SGL

Base 0.0505 0.0380 0.0729 0.0472 0.0284 0.0206 0.0434 0.0267 0.0419 0.0319 0.0566 0.0380
IFT 0.0520 0.0392 0.0792 0.0503 0.0275 0.0202 0.0438 0.0269 0.0326 0.0237 0.0499 0.0307

Llama4Rec 0.0632* 0.0479* 0.0917* 0.0596* 0.0308* 0.0224* 0.0480* 0.0294* 0.0501* 0.0393* 0.0634* 0.0448*
Impro. 21.54% 22.19% 15.78% 18.49% 8.45% 8.74% 9.59% 9.29% 19.57% 23.20% 12.01% 17.89%

Table 3: Performance achieved by different sequential recommendation methods.

Backbone Method ML-100K ML-1M BookCrossing

H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑

SASRec

Base 0.0187 0.0125 0.0385 0.0205 0.0277 0.0165 0.0502 0.0257 0.0086 0.0049 0.0163 0.0081
IFT 0.0204 0.0136 0.0379 0.0207 0.0241 0.0159 0.0473 0.0254 0.0124 0.0086 0.0185 0.0111

Llama4Rec 0.0238* 0.0155* 0.0449* 0.0240* 0.0293* 0.0201* 0.0504 0.0287* 0.0142* 0.0098* 0.0227* 0.0131*
Impro. 16.67% 13.97% 16.62% 15.94% 5.78% 21.82% 0.40% 11.67% 14.52% 13.95% 22.70% 18.02%

BERT4Rec

Base 0.0153 0.0104 0.0294 0.0161 0.0107 0.0069 0.0211 0.0112 0.0088 0.0058 0.0161 0.0088
IFT 0.0174 0.0119 0.0326 0.0100 0.0106 0.0071 0.0188 0.0104 0.0127 0.0092 0.0180 0.0113

Llama4Rec 0.0198* 0.0134* 0.0332 0.0189* 0.0115* 0.0078* 0.0206 0.0115* 0.0154* 0.0108* 0.023* 0.0139*
Impro. 13.79% 12.61% 1.84% 17.39% 7.48% 9.86% -2.37% 2.68% 21.26% 17.39% 27.78% 23.01%

CL4SRec

Base 0.0243 0.0143 0.0436 0.0222 0.0259 0.0153 0.0492 0.0248 0.0083 0.0048 0.0165 0.0082
IFT 0.0230 0.0149 0.0428 0.0230 0.0234 0.0155 0.0447 0.0241 0.0102 0.0071 0.0177 0.0102

Llama4Rec 0.0255* 0.0182* 0.0440 0.0255* 0.0278* 0.0185* 0.0482 0.0268* 0.0138* 0.0093* 0.0220* 0.0127*
Impro. 4.94% 22.15% 0.92% 10.87% 7.34% 19.35% -2.03% 8.06% 35.29% 30.99% 24.29% 24.51%

users with fewer than three interactions in their interaction his-
tory), leaving approximately 25K high-quality instructions. These
instructions are mixed to create an instruction-tuning dataset to
fine-tune the LLM.

5.1.4 Backbone Models. We incorporate our Llama4Rec with the
following recommendation models that are often used for various
recommendation tasks as the backbone models:

• Direct Recommendation. In the scenario of direct recommenda-
tion, We adopt four representative methods, including: MF [20],
LightGCN [13],MixGCF [17], and SGL [46].

• Sequential Recommendation. Regarding sequential recommen-
dation, we opt for three widely used models, including: SASRec
[18], BERT4Rec [37], and CL4SRec [49].

• Rating Prediction.We consider the following classical models
for rating prediction, including: DeepFM [9], NFM [14], DCN
[43], AFM [48], xDeepFM [23], and AutoInt [35].

We employ the LLaMA-2 7B version as the backbone LLM across
all experiments, unless specifically mentioned otherwise. Our pri-
mary comparison is with the standard Instruction Fine-Tuning
(IFT) method adopted in TALLRec [2] and InstructRec [51]. For
the rating prediction task, LLaMA-2 with IFT is used to directly
predict the rating. For the top-k recommendation task, the tuned
LLM is used to re-rank the list predicted by the backbone model, in
accordance with [16], referred to as listwise ranking. Besides, we
also adopt LLM for predicting the rating for each item and sort by
the predicted scores, referred to as pointwise ranking.

5.1.5 Implementation Details. During training for LLaMA 2 (7B)
with full-parameter tuning, we use a uniform learning rate of 2 ×
10−5 and a context length of 2048, and we set the batch size as 16.
Additionally, we use a cosine scheduler for three epochs in total with
a 50-step warm-up period. To efficiently train the computationally
intensive models, we simultaneously employ DeepSpeed training
with ZeRO-3 stage [33] and flash attention [4]. We trained the 7B

SIGIR’24, July 14-18, 2024, Washington D.C., USA Sichun Luo et al.

Table 4: Performance achieved by different methods in rating
prediction task.

Backbone Method ML-100K ML-1M BookCrossing

RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓
LLaMA IFT 1.2792 0.8940 1.2302 0.8770 2.0152 1.3782

DeepFM
Base 1.0487 0.8082 0.9455 0.7409 1.7738 1.3554

Llama4Rec 1.0306* 0.7987* 0.9360* 0.7321* 1.6958* 1.2843*
Impro. 1.73% 1.18% 1.00% 1.19% 4.40% 5.25%

NFM
Base 1.0284 0.8005 0.9438 0.7364 2.121 1.5984

Llama4Rec 1.0189* 0.7961 0.9369* 0.7303* 1.9253* 1.4473*
Impro. 0.92% 0.55% 0.73% 0.83% 9.23% 9.45%

DCN
Base 1.0478 0.8063 0.9426 0.7342 2.0216 1.4622

Llama4Rec 1.0367* 0.8033 0.9345* 0.7272* 1.8518* 1.3566*
Impro. 1.06% 0.37% 0.86% 0.95% 8.40% 7.22%

AFM
Base 1.0471 0.8035 0.9508 0.7464 1.6516 1.2614

Llama4Rec 1.0340* 0.7996 0.9426* 0.7394* 1.6244* 1.2259*
Impro. 1.25% 0.49% 0.86% 0.94% 1.65% 2.81%

xDeepFM
Base 1.1472 0.8836 0.9519 0.7428 2.1756 1.6461

Llama4Rec 1.0947* 0.8483* 0.9401* 0.7336* 1.9610* 1.4833*
Impro. 4.58% 4.00% 1.24% 1.24% 9.86% 9.89%

AutoInt
Base 1.0500 0.8120 0.9471 0.7404 1.9148 1.4501

Llama4Rec 1.0369* 0.8059* 0.9382* 0.7326* 1.7917* 1.3492*
Impro. 1.25% 0.75% 0.94% 1.05% 6.43% 6.96%

model on 16 NVIDIA A800 80GB GPUs. For the inference stage,
we employed the vLLM framework [21] with greedy decoding,
setting the temperature to 0. Only one GPU was utilized during the
inference phase. We only evaluate the instruction-tuned LLaMA
model for rating prediction task since it is not applicable for directly
making top-𝑘 recommendations.

We implement the models for rating prediction task using the
DeepCTR-Torch3 library. For the top-𝑘 recommendation task, we
utilize the SELFRec4 library [50] for implementation. As for the
hyper-parameter settings, 𝛼1 and 𝛼2 are selected from {0.1, 0.3, 0.5,
0.7, 0.9} respectively for all experiments. C is fixed to 1. We repeat
the experiment five times and calculate the average. We report the
best results obtained when the ranking method is selected from
pointwise and listwise ranking. For all experiments, the best results
are highlighted in boldfaces. * indicates the statistical significance
for 𝑝 ≤ 0.05 compared to the best baseline method based on the
paired t-test. Improv. denotes the improvement of our method over
the best baseline method.

5.2 Main Results (RQ1)
We conducted an extensive evaluation of our proposed Llama4Rec
and the baseline methods on three datasets to assess the model’s
performance under diverse recommendation scenarios. The exper-
iment results for rating prediction, direct recommendation, and
sequential recommendation are shown in Table 2, Table 3, and
Table 4, respectively. We have the following key observations.
• Llama4Rec consistently outperforms baseline methods in almost
all scenarios, with particularly significant improvements ob-
served in the direct recommendation task. Moreover, our findings
reveal that direct instruction fine-tuning LLMs for recommen-
dation tasks does not consistently yield promising performance.
These results highlight the effectiveness of integrating LLMs into

3https://github.com/shenweichen/DeepCTR-Torch
4https://github.com/Coder-Yu/SELFRec

Table 5: Ablation study on key components of Llama4Rec on
the ML-1M dataset.

Models ML-1M BookCrossing

H@3 ↑ N@3 ↑ H@3 ↑ N@3 ↑
LightGCN 0.0283 (-) 0.0203 (-) 0.0358 (-) 0.0272 (-)
IFT 0.0268 (-5.30%) 0.0193 (-4.93%) 0.0287 (-19.84%) 0.0202 (-25.74%)
Llama4Rec w/o DA 0.0294 (+3.89%) 0.0209 (+2.96%) 0.0408 (+13.97%) 0.0319 (+17.28%)
Llama4Rec w/o PA 0.0277 (-2.12%) 0.0199 (-1.97%) 0.0372 (+3.92%) 0.0279 (+2.57%)
Llama4Rec w/o AA 0.0298 (+5.30%) 0.0218 (+7.39%) 0.0429 (+19.83%) 0.0332 (+22.06%)
Llama4Rec 0.0304 (+7.42%) 0.0222 (+9.36%) 0.0434 (+21.23%) 0.0338 (+24.26%)

conventional recommendation models, underscoring the impor-
tance of incorporating the mechanism that utilizes instruction-
tuned LLM to mutually augment and adaptively aggregate with
conventional recommendation models.

• In the scenario of the rating prediction task, while the instruction-
tuned LLaMA model significantly underperforms when com-
pared to conventional recommendation models, integrating the
LLM yields a marked performance improvement. This suggests
that the LLM and conventional recommendation models learn
distinct aspects of information. Consequently, integrating the
LLM with conventional recommendation models could enhance
recommendation performance.

• In the context of top-𝑘 recommendations, Llama4Rec exhibits a
more pronounced improvement for direct recommendations task.
In addition, a more significant enhancement is observed on the
Bookcrossing dataset, which can be attributed to the more fine-
grained and distinguishable rating of the Bookcrossing dataset.

5.3 Ablation Study (RQ2)
We conducted an ablation study to analyze the contributions of
different components in our model. Table 5 summarizes the results
of the ablation studies across three variants on the ML-1M dataset.
It is evident that the full model performs considerably better than
all its variants, indicating that all the main components contribute
significantly to overall performance improvement. Moreover, com-
pared to the conventional model, the instruction-tuned LLM does
not achieve superior results, underscoring the importance of model
aggregation. We further analyze the specific impact of each compo-
nent, and our observations are as follows:
• w/o Data Augmentation (w/o DA): In this variant, we remove
the data augmentation module while maintaining other compo-
nents the same. Experimental results reveal a obvious decline in
performance when this module is excluded. This indicates the
module’s capacity to mitigate data sparsity and long-tail problem,
consequently enhancing model performance.

• w/o Prompt Augmentation (w/o PA): In this variant, we re-
move the prompt augmentation component, a crucial element
of the proposed framework. Experimental results demonstrate a
significant degradation in model performance when this module
is excluded, thereby validating its essential role. By employing
the instruction-tuned LLMwith prompt augmentation from prior
knowledge by conventional recommendation models, we achieve
an enhanced model performance, attributable to the capture of
different aspects of information.

• w/o Adaptive Aggregation (w/o AA): In this variant, we sub-
stitute adaptive aggregation with uniform aggregation and keep

https://github.com/shenweichen/DeepCTR-Torch
https://github.com/Coder-Yu/SELFRec

Integrating Large Language Models into Recommendation via Mutual Augmentation and Adaptive Aggregation SIGIR’24, July 14-18, 2024, Washington D.C., USA

Figure 3: Impact of hyper-parameters 𝛼1 and 𝛼2 on ML-1M
dataset with backbone model LightGCN.

Figure 4: Performance comparison w.r.t different LLaMA-2
size for training Llama4Rec on the Bookcrossing dataset.

Figure 5: Performance comparison w.r.t different numbers of
instructions for training Llama4Rec on the ML-1M dataset.

other modules unchanged. Experimental results demonstrate a
drop in model performance, underscoring the significance of
accounting for the user’s long-tail coefficient and employing
adaptive aggregation.

5.4 Hyper-parameter Study (RQ3)
5.4.1 Analysis of Hyper-parameters 𝛼1 and 𝛼2. We conducted an
analysis of the effects of hyper-parameters 𝛼1 and 𝛼2. These pa-
rameters play crucial roles in controlling the weight in adaptive
aggregation, as illustrated in Equation (7). Figure 3 presents the
results on the ML-1M dataset using LightGCN as the backbone
model. As 𝛼1 increases, we observe an initial surge in the model’s
performance, followed by a decline. This trend suggests appropriate
selection of 𝛼1 would enhance the model performance. With respect
to 𝛼2, we observe a similar trend but the decline is more pronounced.
This observation is consistent with the principle of adaptive ag-
gregation, which emphasizes the importance of assigning suitable
weights to tail users.

5.4.2 Analysis of Model Scaling. We further instruction-tuned the
LLaMA-2 model with different model size.5 A comparative analysis
was conducted between the 7B and 13B variants of the instruction-
tuned models, with performance differences specifically evaluated
5Due to resource constraints, training the LLaMA-2 (70B) model with identical ex-
perimental settings was unfeasible, consistently leading to Out-Of-Memory (OOM)
errors.

across various backbone models within the Bookcrossing dataset,
as depicted in Figure 4. Our findings suggest that the LLaMA-2
(13B) model generally surpasses the 7B version in performance.
This can be attributed to the superior language comprehension
and reasoning abilities of the larger model, which contribute to
improved recommendation results. However, it’s worth noting that
the improvements are not substantial, indicating that while larger
models may provide some performance benefits, the degree of im-
provement may not always justify the increased computational
resources and training time required. It underscores the impor-
tance of considering the trade-off between model size, performance
gain, and resource efficiency in the design and application of large
language models.

5.4.3 Analysis of Data Scaling. We evaluated the effect of data
size on LLM training by varying the number of instructions in the
instruction-tuning dataset. Proportionality with our original config-
uration, the model with 2.5K instructions underwent 250 training
steps, while the 12.5K instructions version was trained over 1250
steps. As depicted in Figure 5, a clear trend emerges: model perfor-
mance improves with an increase in the number of instructions,
particularly for direct recommendation models. This highlights
the importance of utilizing larger and more diverse datasets for
instruction tuning LLMs to optimize performance.

5.5 Further Discussion
In this part, we discuss about the computational efficiency and
future improvements. In the Llama4Rec framework, additional
training with augmented data is required, which may present a
potential limitation. In the current experimental setup, we train a
new model from scratch. However, this process could be optimized
by continuing to train a previously tuned model, thereby reduc-
ing time costs. Additionally, in our experiment, we observed that
training the LLaMA-2 7B model with around 25K instructions on
16 A800 GPUs with 2500 steps took approximately 1.94 hours. The
inference time for each instruction averaged about 17 instructions
per second, translating to a requirement of around 0.059 seconds
per item for computation by a single A800 GPU.

This training and inference duration significantly exceeds that
of conventional recommendation models, highlighting the limita-
tions of current LLM-based recommender systems. The substantial
demand for computational resources also represents a significant
challenge. Consequently, employing instruction LLMs for large-
scale industrial recommender systems, such as those with millions
of users, is presently impractical. However, future advancements in
accelerated and parallel computing algorithms for language model
inference could potentially reduce inference times and computa-
tion resources. This improvement might make the integration of
LLMs into large-scale recommender systems feasible, especially by
leveraging many GPUs for parallel computation.

6 CONCLUSION AND FUTUREWORK
In this study, we present Llama4Rec, a general and model-agnostic
framework tailored to facilitate mutual augmentation between con-
ventional recommendation models and LLMs through data aug-
mentation and prompt augmentation. Data augmentation for con-
ventional recommendation models could alleviate issues of data

SIGIR’24, July 14-18, 2024, Washington D.C., USA Sichun Luo et al.

sparsity and the long-tail problem, thus improving conventional
recommendation model performance. Prompt augmentation, on the
other hand, allows the LLM to externalize additional collaborative
or sequential information and further enhance the model capability.
Furthermore, adaptive aggregation is employed to merge the pre-
dictions from both kinds of augmented models, resulting in more
optimized recommendation performance. Comprehensive experi-
mental results across three diverse recommendation tasks on three
real-world datasets demonstrate the effectiveness of Llama4Rec.
While our current approach focuses onmutual augmentationwithin
a single step, our future work will explore expanding mutual aug-
mentation in an iterative manner, potentially unlocking further
improvements in model performance.

REFERENCES
[1] Gediminas Adomavicius and Alexander Tuzhilin. 2005. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and possible
extensions. IEEE transactions on knowledge and data engineering 17, 6 (2005),
734–749.

[2] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He.
2023. Tallrec: An effective and efficient tuning framework to align large language
model with recommendation. arXiv preprint arXiv:2305.00447 (2023).

[3] Xiong-Hui Chen, Bowei He, Yang Yu, Qingyang Li, Zhiwei Qin, Wenjie Shang,
Jieping Ye, and Chen Ma. 2023. Sim2Rec: A Simulator-based Decision-making
Approach to Optimize Real-World Long-term User Engagement in Sequential
Recommender Systems. arXiv preprint arXiv:2305.04832 (2023).

[4] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[5] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey for in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

[6] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[7] Wenqi Fan, Zihuai Zhao, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Jiliang
Tang, and Qing Li. 2023. Recommender systems in the era of large language
models (llms). arXiv preprint arXiv:2307.02046 (2023).

[8] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as language processing (rlp): A unified pretrain, personalized
prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on
Recommender Systems. 299–315.

[9] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. arXiv
preprint arXiv:1703.04247 (2017).

[10] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[11] Bowei He, Xu He, Renrui Zhang, Yingxue Zhang, Ruiming Tang, and Chen Ma.
2023. Dynamic Embedding Size Search with Minimum Regret for Streaming
Recommender System. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management. 741–750.

[12] Bowei He, Xu He, Yingxue Zhang, Ruiming Tang, and Chen Ma. 2023. Dy-
namically Expandable Graph Convolution for Streaming Recommendation. In
Proceedings of the ACM Web Conference 2023. 1457–1467.

[13] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[15] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[16] Yupeng Hou, Junjie Zhang, Zihan Lin, Hongyu Lu, Ruobing Xie, Julian McAuley,
and Wayne Xin Zhao. 2023. Large language models are zero-shot rankers for
recommender systems. arXiv preprint arXiv:2305.08845 (2023).

[17] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu
Wang, and Jie Tang. 2021. Mixgcf: An improved training method for graph neural
network-based recommender systems. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 665–674.

[18] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[19] Zahid Younas Khan, Zhendong Niu, Sulis Sandiwarno, and Rukundo Prince. 2021.
Deep learning techniques for rating prediction: a survey of the state-of-the-art.
Artificial Intelligence Review 54 (2021), 95–135.

[20] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[21] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAttention.
arXiv preprint arXiv:2309.06180 (2023).

[22] Dung D Le and Hady Lauw. 2021. Efficient retrieval of matrix factorization-based
top-k recommendations: A survey of recent approaches. Journal of Artificial
Intelligence Research 70 (2021), 1441–1479.

[23] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 1754–1763.

[24] Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan Zhang. 2023. Is chatgpt a
good recommender? a preliminary study. arXiv preprint arXiv:2304.10149 (2023).

[25] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay,
Denny Zhou, Quoc V Le, Barret Zoph, Jason Wei, et al. 2023. The flan collection:
Designing data and methods for effective instruction tuning. arXiv preprint
arXiv:2301.13688 (2023).

[26] Sichun Luo, Chen Ma, Yuanzhang Xiao, and Linqi Song. 2023. Improving Long-
Tail Item Recommendation with Graph Augmentation. In Proceedings of the
32nd ACM International Conference on Information and Knowledge Management.
1707–1716.

[27] Sichun Luo, Yuanzhang Xiao, and Linqi Song. 2022. Personalized federated
recommendation via joint representation learning, user clustering, and model
adaptation. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management. 4289–4293.

[28] Sichun Luo, Yuanzhang Xiao, Xinyi Zhang, Yang Liu, Wenbo Ding, and Linqi
Song. 2023. PerFedRec++: Enhancing Personalized Federated Recommendation
with Self-Supervised Pre-Training. arXiv preprint arXiv:2305.06622 (2023).

[29] Sichun Luo, Xinyi Zhang, Yuanzhang Xiao, and Linqi Song. 2022. HySAGE:
A hybrid static and adaptive graph embedding network for context-drifting
recommendations. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. 1389–1398.

[30] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[31] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[32] Yoon-Joo Park and Alexander Tuzhilin. 2008. The long tail of recommender
systems and how to leverage it. In Proceedings of the 2008 ACM conference on
Recommender systems. 11–18.

[33] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. In SC20: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 1–16.

[34] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[35] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM international conference
on information and knowledge management. 1161–1170.

[36] Harald Steck. 2013. Evaluation of recommendations: rating-prediction and rank-
ing. In Proceedings of the 7th ACM conference on Recommender systems. 213–220.

[37] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[38] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

https://arxiv.org/abs/2303.08774
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Integrating Large Language Models into Recommendation via Mutual Augmentation and Adaptive Aggregation SIGIR’24, July 14-18, 2024, Washington D.C., USA

[41] Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui
Zhang, Linqi Song, Mingjie Zhan, and Hongsheng Li. 2023. Mathcoder: Seamless
code integration in llms for enhanced mathematical reasoning. arXiv preprint
arXiv:2310.03731 (2023).

[42] Lei Wang and Ee-Peng Lim. 2023. Zero-Shot Next-Item Recommendation using
Large Pretrained Language Models. arXiv preprint arXiv:2304.03153 (2023).

[43] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. 1–7.

[44] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[45] Wei Wei, Xubin Ren, Jiabin Tang, Qinyong Wang, Lixin Su, Suqi Cheng, Junfeng
Wang, Dawei Yin, and Chao Huang. 2023. Llmrec: Large language models with
graph augmentation for recommendation. arXiv preprint arXiv:2311.00423 (2023).

[46] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and
Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 726–735.

[47] Yunjia Xi, Weiwen Liu, Jianghao Lin, Jieming Zhu, Bo Chen, Ruiming Tang,
Weinan Zhang, Rui Zhang, and Yong Yu. 2023. Towards Open-World Recom-
mendation with Knowledge Augmentation from Large Language Models. arXiv
preprint arXiv:2306.10933 (2023).

[48] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: Learning the weight of feature interac-
tions via attention networks. arXiv preprint arXiv:1708.04617 (2017).

[49] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation. In

2022 IEEE 38th international conference on data engineering (ICDE). IEEE, 1259–
1273.

[50] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2023.
Self-supervised learning for recommender systems: A survey. IEEE Transactions
on Knowledge and Data Engineering (2023).

[51] Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong
Wen. 2023. Recommendation as instruction following: A large language model
empowered recommendation approach. arXiv preprint arXiv:2305.07001 (2023).

[52] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang,
Jiwei Li, Runyi Hu, Tianwei Zhang, Fei Wu, et al. 2023. Instruction tuning for
large language models: A survey. arXiv preprint arXiv:2308.10792 (2023).

[53] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep learning based recom-
mender system: A survey and new perspectives. ACM computing surveys (CSUR)
52, 1 (2019), 1–38.

[54] Yang Zhang, Fuli Feng, Jizhi Zhang, Keqin Bao, Qifan Wang, and Xiangnan He.
2023. Collm: Integrating collaborative embeddings into large language models
for recommendation. arXiv preprint arXiv:2310.19488 (2023).

[55] Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, and Ji-
Rong Wen. 2023. Adapting large language models by integrating collaborative
semantics for recommendation. arXiv preprint arXiv:2311.09049 (2023).

[56] Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing
Lu, Anya Jia, Linqi Song, Mingjie Zhan, et al. 2023. Solving challenging math
word problems using gpt-4 code interpreter with code-based self-verification.
arXiv preprint arXiv:2308.07921 (2023).

[57] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. 2005.
Improving recommendation lists through topic diversification. In Proceedings of
the 14th international conference on World Wide Web. 22–32.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Conventional Recommendation Methods
	2.2 Large Language Model for Recommendation

	3 Preliminary
	4 Methodology
	4.1 Overview
	4.2 Data Augmentation for Conventional Recommendation Model
	4.3 Prompt Augmentation for Large Language Model
	4.4 Adaptive Aggregation
	4.5 Training Strategy for LLM

	5 Experiment
	5.1 Experiment Setup
	5.2 Main Results (RQ1)
	5.3 Ablation Study (RQ2)
	5.4 Hyper-parameter Study (RQ3)
	5.5 Further Discussion

	6 Conclusion and future work
	References

