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Abstract—Large language models (LLMs) have demonstrated
remarkable capabilities and have been extensively deployed
across various domains, including recommender systems. Nu-
merous studies have employed specialized prompts to harness the
in-context learning capabilities intrinsic to LLMs. For example,
LLMs are prompted to act as zero-shot rankers for listwise
ranking, evaluating candidate items generated by a retrieval
model for recommendation. Recent research further use instruc-
tion tuning technique to align LLM with human preference for
more promising recommendations. Despite its potential, current
research overlooks the integration of multiple ranking tasks
to enhance model performance. Moreover, the signal from the
conventional recommendation model is not integrated into the
LLM, limiting the current system performance.

In this paper, we introduce RecRanker, tailored for in-
struction tuning LLM to serve as the Ranker for top-k
Recommendations. Specifically, we introduce importance-aware
sampling, clustering-based sampling, and penalty for repetitive
sampling for sampling high-quality, representative, and diverse
users as training data. To enhance the prompt, we introduce a po-
sition shifting strategy to mitigate position bias and augment the
prompt with auxiliary information from conventional recommen-
dation models, thereby enriching the contextual understanding
of the LLM. Subsequently, we utilize the sampled data to assem-
ble an instruction-tuning dataset with the augmented prompt
comprising three distinct ranking tasks: pointwise, pairwise, and
listwise rankings. We further propose a hybrid ranking method
to enhance the model performance by ensembling these ranking
tasks. Our empirical evaluations demonstrate the effectiveness
of our proposed RecRanker in both direct and sequential
recommendation scenarios.

Index Terms—Recommender system, Large language model,
Instruction tuning

I. INTRODUCTION

Recommender systems serve as information filtering tech-
niques designed to mitigate the problem of information over-
load [1]–[4]. Among various scenarios within recommender
systems, the top-k recommendation paradigm is particularly
noteworthy by providing users with a list of top-k items most
relevant to their preferences [5], [6]. Top-k recommendations
encompass diverse tasks, including but not limited to, collab-
orative filtering-based direct recommendations and sequential
recommendations. On the one hand, direct recommendations
are studied by some prominent methodologies including NCF
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[7], NGCF [8], and LightGCN [9]. These techniques harness
collaborative information via neural networks. On the other
hand, for sequential recommendations [10], representative
methods like SASRec [11] and BERT4Rec [12] utilize the
attention mechanism [13] to model user sequences.

In recent years, large language models (LLMs) [14]–[16]
have exhibited significant prowess in natural language un-
derstanding [17], generation [18], and complex reasoning
[19]. Consequently, they have been increasingly integrated
into a multitude of domains, including recommender systems
[20]–[22]. A typical example of LLMs in this context is to
function as a ranker for a pre-filtered set of recommendations.
This preference for LLMs as rankers arises primarily from
the inherent limitations of LLMs, including their constrained
context size and the potential for high computational costs
when processing vast pools of candidate items. Therefore,
a retrieval model is often employed to narrow down the
candidate set, upon which the LLM utilizes its contextual
understanding and reasoning capabilities to generate a ranked
list of recommendations. For example, Hou et al. [23] operate
LLM as a zero-shot ranker for sequential recommendation
by formalizing the recommendation as a conditional ranking
task based on sequential interaction histories. By employing
carefully designed prompting templates and conducting experi-
ments on standard datasets, they show LLMs exhibit promising
zero-shot ranking capabilities that can outperform traditional
models. Similar endeavors are also undertaken by [24], [25],
where they also leverage the in-context learning abilities of
LLMs. However, these methods possess certain limitations.
The standard, general-purpose LLM does not inherently align
with recommendation objectives.

To remedy this, Zhang et al. [26] suggest employing in-
struction tuning to better align the LLM with specific rec-
ommendation tasks. They express user preferences as natural
language instructions, tuning the LLM to deliver more pre-
cise and user-centric recommendations. This approach outper-
forms traditional models and even GPT-3.5 in evaluations.
Nonetheless, current research has not provided a thorough
study of the ranking task, i.e., most studies deploy LLMs
for a singular ranking task, neglecting the exploration of
the potential benefits of combining multiple ranking tasks
for improved results. Furthermore, prevailing approaches rely
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exclusively on textual information of users and items for LLM
processing and reasoning. This oversight of not integrating
signals from conventional recommendation models may limit
the effectiveness of existing methodologies.

To address this shortfall, we introduce instruction tuning
large language model as Ranker for top-k Recommendation,
referred to as RecRanker. Specifically, we propose an adap-
tive user sampling method to garner high-quality users, giving
priority to users with a substantial history of interactions or
who are representative of the broader user base, recognizing
their heightened significance in the dataset. To enhance the
prompt, we propose position shifting strategy to mitigate po-
sition bias. In accordance with the concept of self-consistency
in LLM [27], we posit that the answer that receives consensus
among most replies is more likely to be accurate. We also
incorporate signals from conventional recommendation models
into prompts to augment LLM reasoning, as these signals can
harness information from broader perspectives. The signals
are seamlessly incorporated into the prompt using natural
language descriptions in a uniform format. Subsequently, we
curate an instruction-tuning dataset with enhanced prompts
comprising three distinct ranking tasks, including pointwise,
pairwise, and listwise ranking. The instruction tuning dataset
is adopted to fine-tune the open-source LLM, resulting in
a refined model that is well-aligned with the objectives of
recommendation. Furthermore, we introduce a hybrid rank-
ing approach that amalgamates all three ranking methods to
bolster model performance. Experiments conducted on three
real-world datasets validate the effectiveness of the proposed
RecRanker.

In a nutshell, our contribution is fourfold.

• We introduce RecRanker, a compact framework that ap-
plies instruction-tuned LLMs for diverse ranking tasks in
top-k recommendations. In addition, we propose a hybrid
ranking method that ensembles various ranking tasks, aim-
ing to further improve the model performance.

• RecRanker employs adaptive user sampling to select high-
quality users, thereby facilitating the construction of the
instruction-tuning dataset. Furthermore, we propose a po-
sition shifting strategy within the prompt to mitigate the
position bias in LLM.

• Our approach incorporates information from conventional
recommender systems into the instructions, enabling the
LLM to synergistically leverage signals from both the
conventional recommender system and textual information
for better contextual understanding and user preferences
reasoning.

• We conducted extensive experiments on three real-world
datasets to validate the effectiveness of our proposed Re-
cRanker. Impressively, RecRanker outperforms backbone
models in most cases by a large margin, demonstrating its
significant superiority.

II. RELATED WORK

A. Top-k Recommendation

Top-k recommendations [5] have emerged as a burgeoning
research field, aiming to suggest a list of k items that are
most likely to align with a user’s preferences. Two pre-
dominant categories of algorithms for top-k recommenda-
tions are collaborative filtering-based direct recommendation
and sequential recommendation. For direct recommendation,
memory-based approaches such as user-based and item-based
collaborative filtering are employed [28]. These algorithms
leverage the historical interactions between users and items to
compute similarity scores and then generate recommendations.
Advanced methods, including Neural Collaborative Filtering
(NCF) [7] and Neural Graph Collaborative Filtering (NGCF)
[8], have been developed to better model collaborative user
behavior and infer user preferences with more complex model
structures. In contrast, sequential recommendation focuses on
capturing the dynamic behavior of users. Techniques like
Gated Recurrent Unit for Recommendation (GRU4Rec) [29],
Self-Attention-based Sequential Recommendation (SASRec)
[11], and the more recent transformer-based BERT4Rec [12]
utilize the sequential nature of user interactions to predict the
forthcoming items of interests to users.

Though conventional algorithms achieve promising results
in top-k recommendations, they still lack the ability to under-
stand the content of the items. To address this issue, this paper
proposes to facilitate recommender systems by leveraging the
contextual understanding and reasoning capabilities of LLMs.

B. LLMs for Recommendation

Recently, LLMs have demonstrated remarkable capabilities
and have found extensive applications across various domains,
including recommender systems [21], [22]. Some recent works
utilize LLMs for data augmentation [30] or representation
learning [31]–[33] in recommendations. Notably, one strand of
research leverages LLMs as rankers for recommender systems
[25], [26]. This approach is necessitated by the limitations of
LLMs’ fixed window size, which prevents the direct input of
an exhaustive set of candidate items. Consequently, a retrieval
model is commonly employed to refine and reduce the candi-
date item set. Specifically, Wang et al. [25] investigated the in-
context-learning ability of LLMs with designed task-specific
prompts to facilitate ranking tasks in sequential recommen-
dation. However, the misalignment between general-purpose
LLMs and specialized recommendation tasks constrains the
models’ performance. To address this limitation, InstructRec
[26] instruction tunes LLMs using a specially constructed
dataset of natural language instructions. However, existing
research has yet to fully exploit the ranking capabilities of
LLMs; it has primarily focused on singular ranking tasks,
thereby leaving the ensemble of ranking tasks for improved
performance largely unexplored.

To bridge this gap, we conduct a systematic investigation
into the application of instruction-tuned LLMs for a variety
of ranking tasks, including pointwise, pairwise, listwise, and



Fig. 1: (i). The overall training pipeline of RecRanker. (ii). Adaptive user sampling module, where we propose importance-
aware sampling, clustering-based, and penalty for repetitive sampling to sample users. For each sampled user, corresponding
candidate items are randomly selected from the items the user liked, disliked, and has no interaction with. (iii). Prompt
construction, where we incorporate position shifting and prompt enhancement strategies to enhance the model performance.

their hybrid approaches, with the objective of fully elucidating
the potential of LLMs in top-k recommendation scenarios.

III. PRELIMINARIES

We consider a recommender system with a set of users,
denoted U = {u1, u2, . . . , un}, and a set of items, denoted
I = {i1, i2, . . . , im}. The top-k recommendation focuses on
identifying a subset of items Su ⊂ I for each user u ∈ U . The
subset is chosen to maximize a user-specific utility U(u,S)
with the constraint |S| = k, which is formally expressed as

Su = argmaxS⊂I,|S|=kU(u,S). (1)

In the context of LLM-based recommendation methods,
let L represent the original LLM. These kinds of methods
first utilize prompts to interpret the recommendation task for
user u into natural language. Given a prompt Pu, the LLM-
based recommendation for user u with in-context learning
is denoted by R = L(Pu). To fine-tune our LLM using
instruction-based approaches, we utilize a dedicated dataset,
Dins. The resulting instruction-tuned LLM is represented as
L′. Therefore, the recommendation process in the fine-tuned
model can be succinctly represented as R = L′(Pu)

IV. METHODOLOGY

A. Overview

The overall training and inference pipeline are depicted in
Fig. 1 and Fig. 2, respectively. The training phase consists
of four main stages: adaptive user sampling, candidate item
selection via negative sampling, prompt construction, and
instruction tuning. The adaptive user sampling stage aims
to procure high-quality, representative, and diverse users. It
incorporates three sampling strategies: importance-aware sam-
pling, clustering-based sampling, and penalties for repetition.
For each user sampled, the candidate items consist of items
liked and disliked by the users, as well as some un-interacted
items selected via a commonly used negative sampling method
[34], [35]. Given the users sampled and items selected, we
construct prompts for each ranking task, augmenting them with
signals from conventional recommender models. This strategy
synergizes the strengths of both conventional recommendation
systems and textual data, thereby enhancing the system’s
overall performance. Finally, we use the constructed data to
fine-tune LLMs via instruction tuning.

During the inference phase, for a user in the test data, we
first select candidate items through a retrieval model. This
item selection process is different from the training phase,
where negative sampling is used. Subsequently, the prompt is



Fig. 2: (i). The overall inference pipeline of RecRanker. (ii). Candidate item selection via retrieval model, where we adopt
the retrieval model to calculate the score for each item and select the highest ones as the candidate items. (iii). Comparison
of the proposed hybrid ranking method with three ranking tasks during the inference stage.

constructed, following the approach in the training phase. After
that, the instruction-tuned LLM performs a variety of ranking
tasks. Notably, a hybrid ranking method, which is achieved
through the ensemble of multiple ranking tasks, is employed
in this stage to enhance the model performance.

B. Adaptive User Sampling

We first describe how we sample the raw recommendation
dataset to create a list of users to be included in the fine-
tuning dataset Dins. We do not use the original user set U ,
because we prefer to generate a list of users with improved
distribution and diversity. We denote such a list of users by
a multiset Uins. A multiset is a modified set that allows for
multiple instances of the same element [36]. A multiset is
formally defined by a tuple Uins = (U ins,Mins), where U ins

is the underlying set of the multiset, consisting of its distinct
elements, and Mins : U ins → Z+ is the multiplicity function,
giving the number of occurrences of element u ∈ U ins as
Mins(u). Therefore, the multiplicity Mins(u) of user u will
be the number of prompts regarding user u in the instruction-
tuning dataset Dins.

Some works sample users with equal probabilities from the
user set U [37], while other works sample nearest interactions
[38]. However, these methods could be sub-optimal, since the
recommendation dataset often follows a long-tail distribution.
To compile a high-quality, representative, and diverse dataset,
we introduce three strategies: importance-aware sampling,
clustering-based sampling, and penalties for repetitive sam-
pling. Specifically, we utilize importance-aware sampling and
clustering-based sampling to create two multisets of candidate
users, denoted by U1 and U2. Then from the combined multiset
U3 = U1 + U2 with multiplicity function is M3 = M1 +M2,
we apply a penalty for repetitive sampling to select the final
multiset Uins.

1) Importance-aware Sampling: Data in recommendation
scenarios often exhibit a long-tail distribution, where a large

number of items or users have minimal interactions, and a few
have a large number of interactions [39], [40]. To optimize
the quality of the data for building effective recommendation
models, we propose an importance-aware sampling strategy.
This strategy prioritizes sampling from users with more in-
teractions, based on the premise that users with a higher
number of interactions provide more reliable and consistent
data, crucial for modeling user preferences accurately. We
define the importance of a user by the natural logarithm of
their interaction count. The importance wu of user u is defined
as wu = ln(qu), where qu denotes the number of interactions
for user u. The logarithmic scale is deliberately chosen to
moderate the influence of users with extremely high interaction
counts, ensuring that while they are given priority, they do not
predominate the entire dataset.

The probability of selecting user u is proportional to the
importance wu. This ensures that users with more interactions
have a higher chance of being sampled, while still allowing for
representation across the entire user base. In importance-aware
sampling, the probability of sampling user u is

pu,importance =
wu∑
v∈U wv

, (2)

where the denominator is the sum of the importance across
all the users, serving as a normalizing factor so that the
probabilities sum up to 1.

Importance-aware sampling, as a superior alternative to
uniform sampling, offers several advantages. First, it improves
data quality by prioritizing users who exhibit a higher volume
of interactions, thereby generating a dataset with richer and
more consistent patterns. Second, this strategy equitably bal-
ances both highly active and less active users by incorporating
logarithmic scaling, thereby ensuring that less active users are
not underrepresented.

2) Clustering-based Sampling: To obtain representative
users, we also employ a clustering-based sampling strategy.



TABLE I: Illustrative examples of instructions for three ranking tasks. For better readability, a modified version of the actual
instructions employed in our experiments are shown here.

Type Instructions

Pointwise Ranking The historical interactions of a user include: <historical interactions>. How would the user rate <candidate item>?
Pairwise Ranking The historical interactions of a user include: <historical interactions>. Would the user prefer <candidate item 1>over <candidate item 2>?
Listwise Ranking The historical interactions of a user include: <historical interactions>. How would the user rank the <candidate item list>?

This strategy is grounded in the understanding that users in
recommendation systems exhibit diverse interests. By cluster-
ing users in the latent space, we can categorize them into
distinct groups, each representing a unique set of interests.
Such clustering enables us to capture the multifaceted nature
of user preferences, ensuring that our sampling is not only
representative but also encompasses the broad spectrum of user
behaviors and tendencies.

Our framework allows for any cluster method such as K-
means [41] and Mean Shift [42]. In this paper, we choose
K-means due to its effectiveness and simplicity in grouping
data into cohesive clusters. We first represent each user as an
embedding vector derived by the retrieval model, and then
cluster the users into K groups based on the embedding
vectors. We denote user u’s cluster by ku ∈ {1, . . . ,K}. Once
the users are clustered, we select samples from each cluster.
This selection is not uniform but proportional to the size of
each cluster. Mathematically, the sampling probability of user
u in clustering-based sampling satisfies

pu,clustering ∝ |{v ∈ U : kv = ku}| , (3)

where |{v ∈ U : kv = ku}| is the number of users in the
same cluster as user u. This strategy not only preserves
the diversity within each cluster but also ensures that larger
clusters, which potentially represent more prevalent interests,
have a proportionally larger representation in the final sample.

3) Penalty for Repetitive Sampling: Given the two multisets
U1 and U2 resulting from the importance-aware and clustering-
based samplings, we need to construct the final user list Uins

from their sum U3 = U1+U2, where the multiplicity function
is M3 =M1 +M2.

To enhance diversity in the final multiset Uins, we imple-
ment a penalty for repetitive selections. The rationale behind
this strategy is to mitigate the overrepresentation of certain
“advantage groups” — users or items that might dominate the
dataset due to their high frequency or popularity [39], [40].
To achieve this, we assign a penalty weight for each repeated
selection within our sampling process. The penalty weight for
a user u ∈ U3 is quantitatively expressed as ψu = CM3(u),
where 0<C<1 is a predefined constant. Thus, the penalty
weight is decreasing in the number of occurrences M3(u).
This penalty weight directly influences the probability of a
user being selected for the final dataset. To be specific, the
probability of selecting user u is

pu,penalty =
ψu∑

v∈U3
ψv
, (4)

which ensures that those with higher occurrences are less
likely to be chosen repeatedly.

This penalty for repetitiveness serves a dual purpose. Firstly,
it significantly enhances the diversity of the sample by re-
ducing the likelihood of repeatedly selecting the same users.
Secondly, it ensures a more equitable representation of less
frequent users, providing a more holistic view of user interests
and preferences. In this way, by integrating this penalty
mechanism into our sampling process, we achieve diversity
and balanced representation in the final user list Uins.

C. Candidate Items Selection

The selection of candidate items differs between the training
and inference phases. During training, negative sampling is
utilized to select a mixture of items with which users have
not interacted, as well as a random assortment of items that
users have liked or disliked, forming the set of candidate items.
While in the inference phase, a retrieval model is employed
to generate the entire set of candidate items.

1) Selection via Negative Sampling in The Training Phase:
In the training phase, the candidate item set includes randomly
chosen items that users have liked and disliked. Besides, we
employ the widely-used negative sampling technique [34],
[35], [43], which involves randomly incorporating items with
which users have not interacted into the candidate item set.
These un-interacted items are considered as negative samples.
It is presumed that un-interacted items are more likely to
be preferred over items that users have explicitly disliked.
Based on these selections, we establish the relative ranking
comparison for the instruction tuning dataset construction.

2) Selection via Retrieval Model in The Inference Phase:
In the realm of industrial recommender systems, platforms like
YouTube1 often adopt a two-step process, initially utilizing a
retrieval model to select a preliminary set of candidate items,
which are subsequently re-ranked for final recommendations
[44]. Specifically, within LLM-based recommendation sys-
tems, the retrieval model plays a crucial role as a primary filter,
effectively narrowing the scope of potential recommendations.
This is particularly important due to the intrinsic limitations
in the window size of LLMs. The architecture of the retrieval
model is tailored to suit the nature of the recommendation task
at hand. For direct recommendation, models such as NCF [7],
NGCF [8], and LightGCN [9] are often employed. For sequen-
tial recommendation tasks, where the order of interactions is
significant, models like SASRec [11] and BERT4Rec [12] are
typically favored.

In the procedure of candidate item selection in the inference
phase, we employ the retrieval model to compute a utility score
for each item. Subsequently, we rank all the items based on

1https://www.youtube.com/

https://www.youtube.com/


their utility scores and select the top k′ items with the highest
scores as the candidate items. For top-k recommendations, this
process will sample k′ items with k′>k.

D. Prompt Construction

In this section, we describe the construction of prompts.
We begin by introducing a variety of ranking tasks, followed
by a discussion of our proposed prompt enhancement method.
This method involves augmenting prompts with signals from
a conventional recommendation model.

1) Pointwise, Pairwise, and Listwise Ranking: Our rec-
ommendation system incorporates a multifaceted approach to
ranking tasks, encompassing pointwise, pairwise, and listwise
rankings. Each of these methods plays a distinct role in eval-
uating and ordering candidate items based on their relevance
to user preferences. As demonstrated in Table I, for pointwise
ranking approach, each candidate item is assigned an individ-
ual relevance score. The entire list of candidates is then sorted
based on these scores, providing a straightforward, score-
based ranking. The pairwise ranking method involves a direct
comparison between two candidate items, determining which
of the two is more relevant or preferable in a given context.
Differing from the above two, listwise ranking evaluates and
sorts an entire list of candidate items. It considers the collective
relevance of items, offering a comprehensive ranking based on
overall suitability.

2) Position Shifting in Prompt: Position bias in LLMs
arises when these models disproportionately favor items due
to their locations in a list, rather than their inherent relevance
or quality [45], [46]. This bias can significantly undermine
the consistency and reliability of the output of the model.
To mitigate the position bias, we adopt a position shifting
strategy. During the training phase, we randomize the order of
candidates and user preference items. This strategy is designed
to prevent the model from prioritizing the item position over
its actual significance. Similarly, in the inference phase, we
continue this strategy by randomly altering the positions of
the items. The primary objective of this strategy is to preserve
those responses from LLMs that demonstrate consistency
irrespective of item position. Consequently, the items identified
are reflective of the model’s true preferences, less influenced
by position bias. By employing this method, we ensure that the
LLMs’ responses are founded on genuine relevance, thereby
enhancing the overall trustworthiness of the inference process.

3) Prompt Enhancement: Existing LLM-based approaches
often rely solely on LLMs for processing and ranking textual
information. This reliance, however, neglects the rich and valu-
able signals that conventional recommendation models, like
collaborative filtering, can offer. Models such as LightGCN [9]
excel in extracting high-order collaborative signals, which play
a pivotal role in understanding user preferences through the
influences of user networks. The absence of the collaborative
information could lead to less effective outcomes in LLM-
based recommendations.

To bridge this gap, we propose a prompt enhancement
method that integrates signals from conventional recommen-

dation models into the prompts used for ranking tasks. This in-
tegration allows us to leverage the strengths of both LLMs and
traditional recommendation models, creating a more informed
and context-rich basis for decision-making. Specifically, for
pointwise ranking, we could utilize a rating prediction model
like MF [47] to forecast individual scores. These predictions
are then transformed into natural language descriptions and
seamlessly integrated into the prompt, providing a more nu-
anced basis for item evaluation. For pairwise and listwise
rankings, task-specific models such as LightGCN [9] and
SASRec [11] are employed to predict rankings. In this paper,
we adopt MF [47] and the LightGCN [9] model for prompt
enhancement. The insights from these predictions are then
incorporated into the prompts, enhancing the context and
depth of the ranking process. By augmenting prompts with
data from conventional recommendation models, our method
significantly enriches the ranking tasks in recommendation
systems. This innovative approach not only capitalizes on
the advanced capabilities of LLMs but also harnesses the
collaborative or sequential information offered by conventional
recommendation models.

E. Optimization via Instruction Tuning

After constructing the dataset, we focus on fine-tuning the
LLM in a supervised manner, specifically through instruction
tuning. This process involves optimizing the LLM using a
dataset generated from instructional data, aligning the model
responses more closely with user intents and preferences.

The approach we adopt for supervised fine-tuning is
grounded in the standard cross-entropy loss, following the
principles outlined in Alpaca [48]. The core of this process
lies in the training set Dins, which is comprised of natural
language instruction input-output pairs (x, y). This dataset is
instrumental in guiding the fine-tuning process, ensuring that
the model outputs are aligned with the structured instructional
data.

The primary objective in this phase is to fine-tune the pre-
trained LLM L by minimizing the cross-entropy loss. This is
mathematically formalized as:

min
Θ

∑
(x,y)∈Dins

|y|∑
t=1

− logPΘ

(
yt | x, y[1:t−1]

)
, (5)

where Θ represents the model parameters, PΘ denotes the
conditional probability of generating the t-th token yt in the
target output y, given the input x and the preceding tokens
y[1:t−1], and |y| is the length of the target sequence y.

By minimizing this loss function, the model parameters
Θ are refined to better accommodate the nuances of the
instructional tuning dataset Dins. This fine-tuning leverages
the LLM’s pre-existing capabilities in general language under-
standing and reasoning, as acquired during its initial training
phase. The result is a more sophisticated and nuanced model
that can accurately capture and interpret user preferences
expressed in natural language. Such an enhancement is crucial
for the subsequent recommendation tasks, as it allows the



LLM to provide recommendations that are more aligned with
the user’s expressed needs and preferences. This approach,
therefore, significantly boosts the efficacy and relevance of
the recommendation system, ensuring that it serves users with
high accuracy and personalization.

F. Hybrid Ranking

Inspired by self-consistency in LLM [27], the result agreed
by most LLM responses has a higher probability of being
correct. Recognizing that each ranking task (i.e., pointwise,
pairwise, and listwise ranking) captures different facets of
the recommendation problem, we propose a hybrid ranking
method. This method aims to amalgamate the strengths of
each individual task to achieve a more holistic and effective
recommendation process. The hybrid ranking method operates
by ensembling the outputs of the three distinct ranking tasks.
Mathematically, this process can be expressed as:

U = α1Upointwise + α2Upairwise + α3Ulistwise (6)

where α1, α2, and α3 are weighting coefficients that sum
up to 1. Depending on the values of these coefficients, the
hybrid ranking can effectively mimic any of the individual
ranking methods, thus providing flexibility in the recommen-
dation approach. For the pointwise ranking task, the utility
score, Upointwise, is initially determined by the relevance
score from the LLM prediction. To refine this score and
differentiate between items with identical ratings, an additional
utility score from the retrieval model is incorporated, denoted
as Uretrieval = −m · C1. Here, C1 is a constant and m,
representing the item’s position as determined by the retrieval
model, varies from 1 to k′ (total number of candidate items).
Therefore, the comprehensive utility score for the pointwise
ranking task is Upointwise = Uretrieval+L(P). In the pairwise
ranking scenario, preferred items by LLM are attributed a
utility score Upairwise = C2, where C2 is a constant. For
listwise ranking, the formula Ulistwise = −m′ ·C3 is employed
to score each item, with m′ is the position predicted by LLM
and varying from 1 to k′ and C3 being a constant. This formula
assigns scores across the list of items, integrating the listwise
perspective into the hybrid approach.

V. EXPERIMENT

TABLE II: Dataset Description.

Dataset # of User # of Item # of Rating Density

ML-100K 943 1,682 100,000 0.063046
ML-1M 6,040 3,706 1,000,209 0.044683

BookCrossing 77,805 185,973 433,671 0.000030

The primary goal is to investigate the extent to which
integrating the introduced model can improve the performance
of current recommendation systems. Therefore, we conduct
comprehensive experiments to answer the following research
questions:
• RQ1: Does our proposed RecRanker framework enhance

the performance of existing recommendation models?

• RQ2: What impact do importance aware sampling and
enhanced prompt have on the quality of recommendation
respectively?

• RQ3: How do various hyper-parameters influence the over-
all performance of the framework?

• RQ4: How does the instruction-tuned model compare to
other LLMs, such as GPT?

A. Experimental Setup

1) Dataset: Following [38], we rigorously evaluate the
performance of our proposed framework by employing three
heterogeneous, real-world datasets. MovieLens2 [49] dataset
is utilized as a standard benchmark in movie recommen-
dation systems. We explore two subsets of this dataset:
MovieLens-100K, containing 100,000 user-item ratings, and
MovieLens-1M, which expands to approximately 1 million
ratings. BookCrossing3 [50] dataset comprises user-submitted
book ratings on a 1 to 10 scale and includes metadata such
as ‘Book-Author’ and ‘Book-Title’. The key statistics of these
datasets are detailed in Table II.

2) Evaluation Metrics: In line with the methodologies
adopted in prior works [9], [12], we employ two well-
established metrics for evaluating the top-k recommendation
task: Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG), denoted as H and N, respectively. Our ex-
perimental setup involves setting k to either 3 or 5, similar
to the evaluation approach detailed in [26], allowing for a
comprehensive assessment.

3) Data Preprocessing: To assure data quality in our study,
we implement the 10-core setting, which involves excluding
users and items that have fewer than ten interactions from the
BookCrossing dataset. The processed BookCrossing dataset,
configured with a 10-core setting, comprises 1,820 users,
2,030 items, and 41,456 interactions, resulting in a density
of 0.011220. We adopt the leave-one-out evaluation strategy,
aligning with the methodologies employed in prior research
[26], [51]. Under this strategy, the most recent interaction
of each user is assigned as the test instance, the penultimate
interaction is used for validation, and all preceding interactions
constitute the training set. Regarding the construction of the
instruction-tuning dataset, we sampled 10,000 instructions for
each ranking task for the ML-1M dataset. In the case of the
ML-100K and BookCrossing datasets, we formulated 5,000
instructions for each task, respectively. We eliminated instruc-
tions that were repetitive or of low quality (identified by users
with fewer than three interactions in their interaction history),
leaving approximately 56,000 high-quality instructions. These
instructions are then combined to create a comprehensive
instruction-tuning dataset, which is utilized to fine-tune the
LLM.

4) Model Selection: We incorporate our RecRanker with
the following direct recommendation models as the backbone
models:

2https://grouplens.org/datasets/movielens/
3In the absence of timestamp data within the BookCrossing dataset, we

have reconstructed historical interactions via random sampling.

https://grouplens.org/datasets/movielens/


TABLE III: Performance achieved by different direct recommendation methods. The best results are highlighted in boldfaces.

Backbone Method ML-100K ML-1M BookCrossing

H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑

MF

Base 0.0455 0.0325 0.0690 0.0420 0.0255 0.0187 0.0403 0.0248 0.0503 0.0389 0.0689 0.0465
RecRankerpointwise 0.0660 0.0486 0.0917 0.0592 0.0294 0.0213 0.0456 0.0279 0.0872 0.0710 0.0966 0.0749
RecRankerpairwise 0.0533 0.0368 0.0783 0.0471 0.0275 0.0201 0.0438 0.0268 0.0539 0.0419 0.0716 0.0492
RecRankerlistwise 0.0464 0.0346 0.0712 0.0448 0.0271 0.0196 0.0416 0.0256 0.0430 0.0312 0.0674 0.0411
RecRankerhybrid 0.0690 0.0513 0.0919 0.0607 0.0312 0.0230 0.0469 0.0294 0.0873 0.0720 0.0966 0.0759

Improvement 51.65% 57.85% 33.19% 44.52% 22.35% 22.99% 16.38% 18.55% 73.56% 85.09% 40.20% 63.23%

LightGCN

Base 0.0492 0.0343 0.0744 0.0447 0.0273 0.0197 0.0431 0.0261 0.0645 0.0499 0.0875 0.0595
RecRankerpointwise 0.0723 0.0524 0.0990 0.0634 0.0324 0.0232 0.0480 0.0296 0.1076 0.0876 0.1231 0.0940
RecRankerpairwise 0.0414 0.0298 0.0645 0.0393 0.0287 0.0205 0.0450 0.0272 0.0622 0.0481 0.0840 0.0572
RecRankerlistwise 0.0509 0.0380 0.0764 0.0485 0.0281 0.0202 0.0440 0.0267 0.0566 0.0395 0.0854 0.0513
RecRankerhybrid 0.0731 0.0527 0.0971 0.0625 0.0320 0.0232 0.0497 0.0305 0.1088 0.0888 0.1219 0.0942

Improvement 48.58% 53.64% 33.06% 41.83% 18.68% 17.77% 15.31% 16.86% 68.68% 77.96% 40.69% 58.32%

MixGCF

Base 0.0537 0.0412 0.0736 0.0492 0.0144 0.0108 0.0232 0.0144 0.0746 0.0584 0.0957 0.0671
RecRankerpointwise 0.0701 0.0542 0.0930 0.0637 0.0170 0.0126 0.0263 0.0164 0.1113 0.0916 0.1208 0.0955
RecRankerpairwise 0.0537 0.0413 0.0770 0.0508 0.0169 0.0123 0.0265 0.0163 0.0686 0.0556 0.0885 0.0638
RecRankerlistwise 0.0507 0.0376 0.0738 0.0470 0.0154 0.0111 0.0252 0.0151 0.0558 0.0415 0.0823 0.0523
RecRankerhybrid 0.0712 0.0551 0.0932 0.0641 0.0180 0.0133 0.0269 0.0169 0.1113 0.0918 0.1209 0.0958

Improvement 32.59% 33.74% 26.63% 30.28% 25.00% 23.15% 15.95% 17.36% 49.20% 57.19% 26.33% 42.77%

SGL

Base 0.0505 0.0380 0.0729 0.0472 0.0284 0.0206 0.0434 0.0267 0.0609 0.0476 0.0812 0.0560
RecRankerpointwise 0.0693 0.0517 0.0885 0.0596 0.0320 0.0230 0.0492 0.0301 0.0951 0.0793 0.1044 0.0831
RecRankerpairwise 0.0470 0.0349 0.0710 0.0447 0.0292 0.0211 0.0451 0.0275 0.0590 0.0468 0.0785 0.0549
RecRankerlistwise 0.0535 0.0385 0.0740 0.0470 0.0286 0.0207 0.0436 0.0269 0.0493 0.0362 0.0760 0.0471
RecRankerhybrid 0.0690 0.0525 0.0882 0.0604 0.0325 0.0235 0.0497 0.0305 0.0950 0.0791 0.1045 0.0831

Improvement 37.23% 38.16% 21.40% 27.97% 14.44% 14.08% 14.52% 14.23% 56.16% 66.60% 28.69% 48.39%

TABLE IV: Performance achieved by different sequential recommendation methods. The best results are highlighted in
boldfaces.

Backbone Method ML-100K ML-1M BookCrossing

H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑ H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑

SASRec

Base 0.0187 0.0125 0.0385 0.0205 0.0277 0.0165 0.0501 0.0257 0.0150 0.0086 0.0279 0.0139
RecRankerpointwise 0.0206 0.0147 0.0432 0.0239 0.0308 0.0206 0.0541 0.0301 0.0351 0.0247 0.0482 0.0302
RecRankerpairwise 0.0277 0.0190 0.0479 0.0273 0.0289 0.0195 0.0502 0.0282 0.0227 0.0149 0.0357 0.0203
RecRankerlistwise 0.0204 0.0149 0.0321 0.0197 0.0239 0.0162 0.0407 0.0231 0.0218 0.0153 0.0323 0.0196
RecRankerhybrid 0.0232 0.0160 0.0436 0.0243 0.0304 0.0212 0.0526 0.0303 0.0381 0.0270 0.0487 0.0315

Improvement 48.13% 52.00% 24.42% 33.17% 11.19% 28.48% 7.98% 17.90% 154.00% 213.95% 74.55% 126.62%

BERT4Rec

Base 0.0153 0.0104 0.0294 0.0161 0.0107 0.0069 0.0211 0.0112 0.0179 0.0119 0.0343 0.0185
RecRankerpointwise 0.0183 0.0129 0.0334 0.0191 0.0140 0.0095 0.0231 0.0133 0.0390 0.0279 0.0557 0.0348
RecRankerpairwise 0.0194 0.0133 0.0334 0.0190 0.0090 0.0061 0.0159 0.0089 0.0254 0.0173 0.0416 0.0240
RecRankerlistwise 0.0162 0.0119 0.0240 0.0151 0.0124 0.0085 0.0231 0.0128 0.0242 0.0168 0.0371 0.0221
RecRankerhybrid 0.0191 0.0130 0.0343 0.0192 0.0135 0.0094 0.0230 0.0133 0.0422 0.0305 0.0566 0.0365

Improvement 26.80% 27.88% 16.67% 19.25% 30.84% 37.68% 9.48% 18.75% 135.75% 156.30% 65.01% 97.30%

CL4SRec

Base 0.0243 0.0143 0.0436 0.0222 0.0259 0.0153 0.0492 0.0248 0.0151 0.0088 0.0282 0.0141
RecRankerpointwise 0.0219 0.0149 0.0417 0.0229 0.0290 0.0196 0.0519 0.0289 0.0349 0.0241 0.0501 0.0304
RecRankerpairwise 0.0226 0.0155 0.0404 0.0229 0.0278 0.0186 0.0462 0.0261 0.0190 0.0132 0.0361 0.0202
RecRankerlistwise 0.0200 0.0145 0.0323 0.0195 0.0232 0.0156 0.0413 0.0230 0.0219 0.0152 0.0323 0.0194
RecRankerhybrid 0.0221 0.0152 0.0400 0.0224 0.0280 0.0192 0.0512 0.0286 0.0375 0.0263 0.0514 0.0321

Improvement N/A 8.39% N/A 3.15% 11.97% 28.10% 5.49% 16.53% 148.34% 198.86% 82.27% 127.66%

• Matrix Factorization (MF) [47]: A foundational approach
that decomposes user-item interaction matrices to uncover
latent features. We use Bayesian Personalized Ranking
(BPR) loss [34] to optimize the model.

• LightGCN [9]: Simplifies the graph convolutional network
for efficient recommendation by focusing on user-item graph
embeddings.

• MixGCF [52]: A hybrid method combining graph convolu-
tion with collaborative filtering, enhancing recommendation
diversity and accuracy.

• SGL [53]: Utilizes self-supervised learning within graph
neural networks to improve recommendation quality through
auxiliary tasks.

We also employ several widely used sequential recommen-

dation models as the backbones.
• SASRec [11]: Employs a self-attention mechanism in se-

quential models to better capture user preferences over time.
• BERT4Rec [12]: Adapts the BERT architecture to sequen-

tial recommendation, capturing complex item interaction
patterns.

• CL4SRec [54]: Leverages contrastive learning for sequen-
tial recommendation, enhancing model robustness and un-
derstanding of user-item sequences.
The backbone models serve as the retrieval models in

RecRanker. For each backbone model, we choose the top
ten items as candidate items, setting k′ = 10.

We leave out the comparison with other instruction-tuning
LLM for recommendation methods such as TALLRec [38] and



InstructRec [37]. This exclusion is justified as these methods
are not primarily designed for diverse ranking tasks. Specif-
ically, TALLRec is tailored for a binary classification task,
determining whether a user likes an item or not. InstructRec,
on the other hand, relies on the powerful yet closed-source
GPT model to generate information, rendering it impractical
in our context. Nevertheless, it is important to note that these
methods adhere to the standard approach for instruction tuning
in LLMs. As detailed in Section V-C, we include an ablation
study that evaluates our method’s enhancements over the
standard instruction tuning LLMs, thereby underscoring the
superiority of our approach.

5) Implementation Details: We chose LLaMA-2 (7B) [15]
as the backbone of LLM in our experiment due to its strong
capability among the open-source LLMs. In the training phase
of LLaMA-2 (7B), we adopted a uniform learning rate of
2× 10−5 , coupled with a context length of 1024. The batch
size was fixed at 4, complemented by gradient accumulation
steps of 2. Additionally, a cosine scheduler was implemented,
integrating a preliminary warm-up phase of 50 steps. The
training comprised a total of 6000 steps. We employed Deep-
Speed’s ZeRO-3 stage optimization [55] alongside the flash
attention technique [56] for efficient training of these models.
This training process was executed on 16 NVIDIA A800 80GB
GPUs. During the inference process, the vLLM framework
[57] was employed, setting the temperature parameter at 0.1,
with top-k and top-p values at 10 and 0.1, respectively.
Inference was conducted using a single NVIDIA A800 80GB
GPU.

For the top-k recommendation task, we utilize the SEL-
FRec4 library [53] for implementation. As for the hyper-
parameter settings, we set α1 = α2 = α3 = 1

3 for all
experiments. C is set to 0.92 in this paper. C1, C2, and C3
are set to 0.05, 0.5, and 0.025 respectively. We repeat the
experiment five times and calculate the average.

B. Main Results (RQ1)

The experiment results for direct recommendation and se-
quential recommendation are shown in Table III and Table IV
respectively. We have the following key observations:
• In the context of MF and LightGCN, pairwise and listwise

ranking methods surpass the baseline model. However,
these methods encounter difficulties in yielding favorable
outcomes when applied to more advanced models like
MixGCF or SGL. In contrast, pointwise ranking consistently
outperforms the base models, achieving a marked improve-
ment. This enhancement might be attributed to the LLM
proficiency in making more objective judgments, rather
than comparing multiple items. Additionally, the relative
simplicity of pointwise tasks suggests that LLMs are more
adept at handling simpler tasks.

• Furthermore, hybrid ranking methods generally outperform
pointwise ranking. Despite the significantly lower per-
formance of pairwise and listwise ranking compared to

4https://github.com/Coder-Yu/SELFRec

TABLE V: Ablation Study on ML-100K dataset with back-
bone model MF for pairwise ranking. The best results are
highlighted in boldfaces.

Variants H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑

RecRanker 0.0533 0.0368 0.0783 0.0471
w/o Adaptive User Sampling 0.0472 0.0347 0.0759 0.0465
w/o Position Shifting 0.0472 0.0337 0.0764 0.0456
w/o Prompt Enhancement 0.0494 0.0358 0.0742 0.0459

pointwise ranking, integrating them into a hybrid ranking
approach can still result in improvements. This is in line
with the concept of self-consistency in LLMs; that is, when
a model consistently agrees on a particular answer, there is
a higher likelihood of its accuracy.

• RecRanker demonstrates a more significant improvement
on the Bookcrossing dataset than on the Movielens dataset.
This enhancement may be due to the fine-grained ratings
in Bookcrossing dataset, which range from 1 to 10, thereby
enabling the tuned LLM to make more precise predictions.
This observation can be attributed to the fact that the

general recommendation models have the capability to mine
collaborative information effectively, which makes them more
excel at ranking items. As a result, the need for reranking is
comparatively lower in these models.

C. Ablation Study (RQ2)

In this section, we study the benefits of each individual
component of ReRanker. The results are demonstrated in
Table V. The results demonstrate that the complete model
outperforms all three model variants. This outcome under-
scores the significant contribution of each main component to
the enhancement of overall performance. A detailed analysis
of each component’s specific impact yielded the following
insights:
• w/o Adaptive User Sampling: This variant substitutes the

proposed adaptive user sampling with a uniform sampling
approach. The experimental results reveal a notable de-
cline in model performance. This decline underscores the
importance of adaptive user sampling in selecting critical,
representative, and diverse user samples for training, thereby
enhancing model performance.

• w/o Position Shifting: The position shifting is excluded in
this variant, maintaining other components the same. The
observed performance reduction in this variant highlights
the significance of position shifting. It mitigates position
bias, leading to more consistent and reliable results.

• w/o Prompt Enhancement: In this variant, prompt en-
hancement is removed while retaining other modules. A
marked decrease in performance is observed, suggesting that
conventional recommender models may provide valuable
information for LLM to generate more accurate predictions.

D. Hyper-parameter Study (RQ3)

1) Analysis of hyper-parameters C1, C2 and C3: We analyze
the influence of hyper-parameters C1, C2, and C3 on the

https://github.com/Coder-Yu/SELFRec


(a) Impact of C1 (b) Impact of C2 (c) Impact of C3

Fig. 3: Analysis of hyper-parameters C1, C2 and C3 on ML-1M dataset with backbone model MF and hybrid ranking task.

(a) Pointwise Ranking (b) Pairwise Ranking (c) Listwise Ranking (d) Hybrid Ranking

Fig. 4: Performance comparison for LLaMA-2 (7B) and LLaMA-2 (13B) model with respect to different ranking tasks on the
Bookcrossing dataset with backbone model SGL.

ML-1M dataset, employing MF as the underlying model,
as depicted in Figure 3. We noted that increases in C1 and
C3 led to fluctuations and a general decline in performance.
This indicates that judicious selection of C1 and C3 is crucial
for optimizing model performance, particularly since both
pairwise and listwise ranking methods underperform compared
to pointwise ranking, rendering high values of C1 and C3
suboptimal. On the other hand, a gradual improvement in
performance was observed with the increment of C2. These
findings underscore the significance of appropriate hyper-
parameter selection in achieving optimal model performance.

2) Analysis of model scaling.: We further instruction-tuned
the LLaMA-2 (13B) model.5 We conducted a comparative
analysis between the 7B and 13B versions of the instruction-
tuned models. The performance differences between LLaMA-
2 7B and LLaMA-2 13B were specifically assessed across
various ranking tasks within the Bookcrossing dataset, as
illustrated in Figure 4. Our observations revealed that the
LLaMA-2 (13B) model generally outperformed the 7B model.
This superiority can be attributed to the enhanced capabil-
ities of the larger model, which result in better language
comprehension and reasoning ability, ultimately leading to
improved ranking outcomes. In addition, It is noteworthy that
the improvements in pointwise ranking and listwise ranking
were more pronounced compared to pairwise ranking. This
suggests that LLMs still face challenges in certain ranking
tasks. Furthermore, the hybrid ranking approach demonstrated
significant progress across all evaluation metrics. This under-
scores the effectiveness of integrating multiple ranking tasks,

5Training the LLaMA-2 (70B) model with the same experimental settings
was impractical due to resource constraints, consistently resulting in Out-Of-
Memory (OOM) errors.

TABLE VI: Performance comparison w.r.t different numbers
of instructions for training RecRanker on the ML-100K
dataset using the MF backbone model for pairwise ranking

# of Instructions H@3 ↑ N@3 ↑ H@5 ↑ N@5 ↑

56K 0.0533 0.0368 0.0783 0.0471
28K 0.0481 0.0348 0.0757 0.0462
5.6K 0.0475 0.0353 0.0723 0.0454

highlighting the strengths of the proposed hybrid ranking
method.

3) Analysis of data scaling.: The training of the LLM
was conducted with varying quantities of instructions in the
instruction-tuning dataset to evaluate the effect of data size.
Specifically, the version with 5.6K instructions was trained
over 600 steps, while the version with 28K instructions un-
derwent 3000 steps of training, proportional to our original
configuration. The experiment result is detailed in Table VI.
An observable trend is that an increase in the number of
instructions correlates with enhanced model performance. This
underscores the significance of incorporating a larger and
more diverse dataset for instruction tuning LLMs to achieve
improved performance.

E. Comparison with the GPT Model (RQ4)

We compare our instruction-tuned LLM with the GPT
model, specifically, the GPT-3.5-turbo6 model. We employed
a sample of 100 listwise ranking task instances from the
Bookcrossing dataset, using the CLSRec model as the back-
bone for evaluating the GPT model. This experiment setting
aligns with the findings of [58], which highlight the optimal

6https://platform.openai.com/docs/models/gpt-3-5

https://platform.openai.com/docs/models/gpt-3-5


Fig. 5: Comparison between our instruction-tuned model with
the GPT-3.5-turbo model.

cost-performance equilibrium achieved when GPT-3.5 is ap-
plied to the listwise ranking task. As demonstrated in Figure
5, our instruction-tuned RecRanker with hybrid ranking no-
tably outperforms the GPT-3.5 model. This impressive result
emphasizes the crucial role of instruction tuning in aligning
general-purpose LLMs specifically for recommendation tasks.

F. Further Discussion

In our experiment, we observed that training the LLaMA-2
7B model with around 56K instructions on 16 A800 GPUs
took approximately 4.6 hours. Besides, training the LLaMA-
2 13B model under the same conditions required around 5.3
hours. The inference time for each instruction averaged about
17 instructions per second, translating to a requirement of
around 0.059 seconds per item for computation by a single
A800 GPU.

This training and inference duration significantly exceeds
that of conventional recommendation models, highlighting the
limitations of current LLM-based recommender systems. The
substantial demand for computational resources also represents
a significant challenge. Consequently, employing instruction
LLMs for large-scale industrial recommender systems, such as
those with millions of users, is presently impractical. However,
future advancements in accelerated and parallel computing
algorithms for language model inference could potentially
reduce inference times and computation resources. This im-
provement might make the integration of LLMs into large-
scale recommender systems feasible, especially by leveraging
many GPUs for parallel computation.

VI. CONCLUSION

In this paper, we introduce RecRanker, a novel framework
for employing instruction tuning LLM as the Ranker in
top-k Recommendations. Initially, we propose an adaptive
user sampling for obtaining high-quality, representative, and
diverse data. In the following step, we construct an instruction-
tuning dataset that encompasses three distinct ranking tasks:
pointwise, pairwise, and listwise rankings. We further improve
the prompt by adopting position shifting strategy to mitigate
position bias, as well as integrating auxiliary information from
conventional recommendation models for prompt enhance-
ment. Moreover, we introduce a hybrid ranking method that
combines these diverse ranking tasks to improve overall model
performance. Extensive empirical studies on three real-world
datasets across diverse rankings tasks validate the effectiveness
of our proposed framework.
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memory-efficient exact attention with io-awareness,” Advances in Neural
Information Processing Systems, vol. 35, pp. 16 344–16 359, 2022.

[57] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management
for large language model serving with pagedattention,” arXiv preprint
arXiv:2309.06180, 2023.

[58] S. Dai, N. Shao, H. Zhao, W. Yu, Z. Si, C. Xu, Z. Sun, X. Zhang,
and J. Xu, “Uncovering chatgpt’s capabilities in recommender systems,”
arXiv preprint arXiv:2305.02182, 2023.

https://github.com/tatsu-lab/stanford_alpaca

	Introduction
	Related work
	Top-k Recommendation
	LLMs for Recommendation

	PRELIMINARIES
	Methodology
	Overview
	Adaptive User Sampling
	Importance-aware Sampling
	Clustering-based Sampling
	Penalty for Repetitive Sampling

	Candidate Items Selection
	Selection via Negative Sampling in The Training Phase
	Selection via Retrieval Model in The Inference Phase

	Prompt Construction
	Pointwise, Pairwise, and Listwise Ranking
	Position Shifting in Prompt
	 Prompt Enhancement

	 Optimization via Instruction Tuning 
	Hybrid Ranking

	Experiment
	Experimental Setup
	Dataset
	Evaluation Metrics
	Data Preprocessing
	Model Selection
	Implementation Details

	Main Results (RQ1)
	Ablation Study (RQ2)
	Hyper-parameter Study (RQ3)
	Analysis of hyper-parameters C1, C2 and C3
	Analysis of model scaling.
	Analysis of data scaling.

	Comparison with the GPT Model (RQ4)
	Further Discussion

	Conclusion
	References

